/* Copyright 2013 Google Inc. All Rights Reserved. Distributed under MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT */ /* Library for preprocessing fonts as part of the WOFF 2.0 conversion. */ #include "./transform.h" #include // for std::abs #include "./buffer.h" #include "./font.h" #include "./glyph.h" #include "./table_tags.h" #include "./variable_length.h" namespace woff2 { namespace { const int FLAG_ARG_1_AND_2_ARE_WORDS = 1 << 0; const int FLAG_WE_HAVE_INSTRUCTIONS = 1 << 8; const int FLAG_OVERLAP_SIMPLE_BITMAP = 1 << 0; void WriteBytes(std::vector* out, const uint8_t* data, size_t len) { if (len == 0) return; size_t offset = out->size(); out->resize(offset + len); memcpy(&(*out)[offset], data, len); } void WriteBytes(std::vector* out, const std::vector& in) { for (size_t i = 0; i < in.size(); ++i) { out->push_back(in[i]); } } void WriteUShort(std::vector* out, int value) { out->push_back(value >> 8); out->push_back(value & 255); } void WriteLong(std::vector* out, int value) { out->push_back((value >> 24) & 255); out->push_back((value >> 16) & 255); out->push_back((value >> 8) & 255); out->push_back(value & 255); } // Glyf table preprocessing, based on // GlyfEncoder.java class GlyfEncoder { public: explicit GlyfEncoder(int num_glyphs) : n_glyphs_(num_glyphs) { bbox_bitmap_.resize(((num_glyphs + 31) >> 5) << 2); } bool Encode(int glyph_id, const Glyph& glyph) { if (glyph.composite_data_size > 0) { WriteCompositeGlyph(glyph_id, glyph); } else if (glyph.contours.size() > 0) { WriteSimpleGlyph(glyph_id, glyph); } else { WriteUShort(&n_contour_stream_, 0); } return true; } void GetTransformedGlyfBytes(std::vector* result) { WriteUShort(result, 0); // Version WriteUShort(result, overlap_bitmap_.empty() ? 0x00 : FLAG_OVERLAP_SIMPLE_BITMAP); // Flags WriteUShort(result, n_glyphs_); WriteUShort(result, 0); // index_format, will be set later WriteLong(result, n_contour_stream_.size()); WriteLong(result, n_points_stream_.size()); WriteLong(result, flag_byte_stream_.size()); WriteLong(result, glyph_stream_.size()); WriteLong(result, composite_stream_.size()); WriteLong(result, bbox_bitmap_.size() + bbox_stream_.size()); WriteLong(result, instruction_stream_.size()); WriteBytes(result, n_contour_stream_); WriteBytes(result, n_points_stream_); WriteBytes(result, flag_byte_stream_); WriteBytes(result, glyph_stream_); WriteBytes(result, composite_stream_); WriteBytes(result, bbox_bitmap_); WriteBytes(result, bbox_stream_); WriteBytes(result, instruction_stream_); if (!overlap_bitmap_.empty()) { WriteBytes(result, overlap_bitmap_); } } private: void WriteInstructions(const Glyph& glyph) { Write255UShort(&glyph_stream_, glyph.instructions_size); WriteBytes(&instruction_stream_, glyph.instructions_data, glyph.instructions_size); } bool ShouldWriteSimpleGlyphBbox(const Glyph& glyph) { if (glyph.contours.empty() || glyph.contours[0].empty()) { return glyph.x_min || glyph.y_min || glyph.x_max || glyph.y_max; } int16_t x_min = glyph.contours[0][0].x; int16_t y_min = glyph.contours[0][0].y; int16_t x_max = x_min; int16_t y_max = y_min; for (const auto& contour : glyph.contours) { for (const auto& point : contour) { if (point.x < x_min) x_min = point.x; if (point.x > x_max) x_max = point.x; if (point.y < y_min) y_min = point.y; if (point.y > y_max) y_max = point.y; } } if (glyph.x_min != x_min) return true; if (glyph.y_min != y_min) return true; if (glyph.x_max != x_max) return true; if (glyph.y_max != y_max) return true; return false; } void WriteSimpleGlyph(int glyph_id, const Glyph& glyph) { if (glyph.overlap_simple_flag_set) { EnsureOverlapBitmap(); overlap_bitmap_[glyph_id >> 3] |= 0x80 >> (glyph_id & 7); } int num_contours = glyph.contours.size(); WriteUShort(&n_contour_stream_, num_contours); if (ShouldWriteSimpleGlyphBbox(glyph)) { WriteBbox(glyph_id, glyph); } for (int i = 0; i < num_contours; i++) { Write255UShort(&n_points_stream_, glyph.contours[i].size()); } int lastX = 0; int lastY = 0; for (int i = 0; i < num_contours; i++) { int num_points = glyph.contours[i].size(); for (int j = 0; j < num_points; j++) { int x = glyph.contours[i][j].x; int y = glyph.contours[i][j].y; int dx = x - lastX; int dy = y - lastY; WriteTriplet(glyph.contours[i][j].on_curve, dx, dy); lastX = x; lastY = y; } } if (num_contours > 0) { WriteInstructions(glyph); } } void WriteCompositeGlyph(int glyph_id, const Glyph& glyph) { WriteUShort(&n_contour_stream_, -1); WriteBbox(glyph_id, glyph); WriteBytes(&composite_stream_, glyph.composite_data, glyph.composite_data_size); if (glyph.have_instructions) { WriteInstructions(glyph); } } void WriteBbox(int glyph_id, const Glyph& glyph) { bbox_bitmap_[glyph_id >> 3] |= 0x80 >> (glyph_id & 7); WriteUShort(&bbox_stream_, glyph.x_min); WriteUShort(&bbox_stream_, glyph.y_min); WriteUShort(&bbox_stream_, glyph.x_max); WriteUShort(&bbox_stream_, glyph.y_max); } void WriteTriplet(bool on_curve, int x, int y) { int abs_x = std::abs(x); int abs_y = std::abs(y); int on_curve_bit = on_curve ? 0 : 128; int x_sign_bit = (x < 0) ? 0 : 1; int y_sign_bit = (y < 0) ? 0 : 1; int xy_sign_bits = x_sign_bit + 2 * y_sign_bit; if (x == 0 && abs_y < 1280) { flag_byte_stream_.push_back(on_curve_bit + ((abs_y & 0xf00) >> 7) + y_sign_bit); glyph_stream_.push_back(abs_y & 0xff); } else if (y == 0 && abs_x < 1280) { flag_byte_stream_.push_back(on_curve_bit + 10 + ((abs_x & 0xf00) >> 7) + x_sign_bit); glyph_stream_.push_back(abs_x & 0xff); } else if (abs_x < 65 && abs_y < 65) { flag_byte_stream_.push_back(on_curve_bit + 20 + ((abs_x - 1) & 0x30) + (((abs_y - 1) & 0x30) >> 2) + xy_sign_bits); glyph_stream_.push_back((((abs_x - 1) & 0xf) << 4) | ((abs_y - 1) & 0xf)); } else if (abs_x < 769 && abs_y < 769) { flag_byte_stream_.push_back(on_curve_bit + 84 + 12 * (((abs_x - 1) & 0x300) >> 8) + (((abs_y - 1) & 0x300) >> 6) + xy_sign_bits); glyph_stream_.push_back((abs_x - 1) & 0xff); glyph_stream_.push_back((abs_y - 1) & 0xff); } else if (abs_x < 4096 && abs_y < 4096) { flag_byte_stream_.push_back(on_curve_bit + 120 + xy_sign_bits); glyph_stream_.push_back(abs_x >> 4); glyph_stream_.push_back(((abs_x & 0xf) << 4) | (abs_y >> 8)); glyph_stream_.push_back(abs_y & 0xff); } else { flag_byte_stream_.push_back(on_curve_bit + 124 + xy_sign_bits); glyph_stream_.push_back(abs_x >> 8); glyph_stream_.push_back(abs_x & 0xff); glyph_stream_.push_back(abs_y >> 8); glyph_stream_.push_back(abs_y & 0xff); } } void EnsureOverlapBitmap() { if (overlap_bitmap_.empty()) { overlap_bitmap_.resize((n_glyphs_ + 7) >> 3); } } std::vector n_contour_stream_; std::vector n_points_stream_; std::vector flag_byte_stream_; std::vector composite_stream_; std::vector bbox_bitmap_; std::vector bbox_stream_; std::vector glyph_stream_; std::vector instruction_stream_; std::vector overlap_bitmap_; int n_glyphs_; }; } // namespace bool TransformGlyfAndLocaTables(Font* font) { // no transform for CFF const Font::Table* glyf_table = font->FindTable(kGlyfTableTag); const Font::Table* loca_table = font->FindTable(kLocaTableTag); // If you don't have glyf/loca this transform isn't very interesting if (loca_table == NULL && glyf_table == NULL) { return true; } // It would be best if you didn't have just one of glyf/loca if ((glyf_table == NULL) != (loca_table == NULL)) { return FONT_COMPRESSION_FAILURE(); } // Must share neither or both loca & glyf if (loca_table->IsReused() != glyf_table->IsReused()) { return FONT_COMPRESSION_FAILURE(); } if (loca_table->IsReused()) { return true; } Font::Table* transformed_glyf = &font->tables[kGlyfTableTag ^ 0x80808080]; Font::Table* transformed_loca = &font->tables[kLocaTableTag ^ 0x80808080]; int num_glyphs = NumGlyphs(*font); GlyfEncoder encoder(num_glyphs); for (int i = 0; i < num_glyphs; ++i) { Glyph glyph; const uint8_t* glyph_data; size_t glyph_size; if (!GetGlyphData(*font, i, &glyph_data, &glyph_size) || (glyph_size > 0 && !ReadGlyph(glyph_data, glyph_size, &glyph))) { return FONT_COMPRESSION_FAILURE(); } encoder.Encode(i, glyph); } encoder.GetTransformedGlyfBytes(&transformed_glyf->buffer); const Font::Table* head_table = font->FindTable(kHeadTableTag); if (head_table == NULL || head_table->length < 52) { return FONT_COMPRESSION_FAILURE(); } transformed_glyf->buffer[7] = head_table->data[51]; // index_format transformed_glyf->tag = kGlyfTableTag ^ 0x80808080; transformed_glyf->length = transformed_glyf->buffer.size(); transformed_glyf->data = transformed_glyf->buffer.data(); transformed_loca->tag = kLocaTableTag ^ 0x80808080; transformed_loca->length = 0; transformed_loca->data = NULL; return true; } // See https://www.microsoft.com/typography/otspec/hmtx.htm // See WOFF2 spec, 5.4. Transformed hmtx table format bool TransformHmtxTable(Font* font) { const Font::Table* glyf_table = font->FindTable(kGlyfTableTag); const Font::Table* hmtx_table = font->FindTable(kHmtxTableTag); const Font::Table* hhea_table = font->FindTable(kHheaTableTag); // If you don't have hmtx or a glyf not much is going to happen here if (hmtx_table == NULL || glyf_table == NULL) { return true; } // hmtx without hhea doesn't make sense if (hhea_table == NULL) { return FONT_COMPRESSION_FAILURE(); } // Skip 34 to reach 'hhea' numberOfHMetrics Buffer hhea_buf(hhea_table->data, hhea_table->length); uint16_t num_hmetrics; if (!hhea_buf.Skip(34) || !hhea_buf.ReadU16(&num_hmetrics)) { return FONT_COMPRESSION_FAILURE(); } // Must have at least one hMetric if (num_hmetrics < 1) { return FONT_COMPRESSION_FAILURE(); } int num_glyphs = NumGlyphs(*font); // Most fonts can be transformed; assume it's a go until proven otherwise std::vector advance_widths; std::vector proportional_lsbs; std::vector monospace_lsbs; bool remove_proportional_lsb = true; bool remove_monospace_lsb = (num_glyphs - num_hmetrics) > 0; Buffer hmtx_buf(hmtx_table->data, hmtx_table->length); for (int i = 0; i < num_glyphs; i++) { Glyph glyph; const uint8_t* glyph_data; size_t glyph_size; if (!GetGlyphData(*font, i, &glyph_data, &glyph_size) || (glyph_size > 0 && !ReadGlyph(glyph_data, glyph_size, &glyph))) { return FONT_COMPRESSION_FAILURE(); } uint16_t advance_width = 0; int16_t lsb = 0; if (i < num_hmetrics) { // [0, num_hmetrics) are proportional hMetrics if (!hmtx_buf.ReadU16(&advance_width)) { return FONT_COMPRESSION_FAILURE(); } if (!hmtx_buf.ReadS16(&lsb)) { return FONT_COMPRESSION_FAILURE(); } if (glyph_size > 0 && glyph.x_min != lsb) { remove_proportional_lsb = false; } advance_widths.push_back(advance_width); proportional_lsbs.push_back(lsb); } else { // [num_hmetrics, num_glyphs) are monospace leftSideBearing's if (!hmtx_buf.ReadS16(&lsb)) { return FONT_COMPRESSION_FAILURE(); } if (glyph_size > 0 && glyph.x_min != lsb) { remove_monospace_lsb = false; } monospace_lsbs.push_back(lsb); } // If we know we can't optimize, bail out completely if (!remove_proportional_lsb && !remove_monospace_lsb) { return true; } } Font::Table* transformed_hmtx = &font->tables[kHmtxTableTag ^ 0x80808080]; uint8_t flags = 0; size_t transformed_size = 1 + 2 * advance_widths.size(); if (remove_proportional_lsb) { flags |= 1; } else { transformed_size += 2 * proportional_lsbs.size(); } if (remove_monospace_lsb) { flags |= 1 << 1; } else { transformed_size += 2 * monospace_lsbs.size(); } transformed_hmtx->buffer.reserve(transformed_size); std::vector* out = &transformed_hmtx->buffer; WriteBytes(out, &flags, 1); for (uint16_t advance_width : advance_widths) { WriteUShort(out, advance_width); } if (!remove_proportional_lsb) { for (int16_t lsb : proportional_lsbs) { WriteUShort(out, lsb); } } if (!remove_monospace_lsb) { for (int16_t lsb : monospace_lsbs) { WriteUShort(out, lsb); } } transformed_hmtx->tag = kHmtxTableTag ^ 0x80808080; transformed_hmtx->flag_byte = 1 << 6; transformed_hmtx->length = transformed_hmtx->buffer.size(); transformed_hmtx->data = transformed_hmtx->buffer.data(); return true; } } // namespace woff2