This is a list of all substantial corrections made to *Computers & Typesetting* between the first “Millennium edition” of 2000 and the second such edition, which appeared late in 2001. (More precisely, it lists errors to the 16th, 7th, 6th, 4th, and 5th printings of Volumes A, B, C, D, and E, respectively, that were corrected in the 17th, 8th, 7th, 5th, and 6th printings.) Changes to the mini-indexes and master indexes of Volumes B, D, and E are not shown here unless they are not obviously derivable from what has been shown.

<table>
<thead>
<tr>
<th>Page</th>
<th>Line/Line(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A16</td>
<td>7 from the bottom</td>
<td>Ten-point type is different from magnified five-point type.</td>
</tr>
<tr>
<td>A17</td>
<td>7</td>
<td>Specifications that grow in geometric ratios—something like equal-tempered tuning</td>
</tr>
<tr>
<td>A51</td>
<td>18–20</td>
<td>(ff) yields (ff); (fi) yields (fi); (fl) yields (fl); (ffi) yields (ffi); (ff1) yields (ffl); (") yields ("); (' ') yields ("); (') yields ('); (?') yields (?'); (--) yields (--); (---) yields (---).</td>
</tr>
<tr>
<td>A52</td>
<td>7 from the bottom</td>
<td>\texttt{\ae}, \texttt{\AE} \texttt{æ}, \texttt{Æ} (Latin ligature and Scandinavian letter AE)</td>
</tr>
<tr>
<td>A71</td>
<td>15</td>
<td>One of the interesting things that can happen when glue stretches and</td>
</tr>
<tr>
<td>A180</td>
<td>20</td>
<td>Challenge number 5: (k = 1.38065 \times 10^{-16} \text{erg K}^{-1}).</td>
</tr>
<tr>
<td>A254</td>
<td>12 from the bottom</td>
<td>becomes two lines</td>
</tr>
<tr>
<td>A292</td>
<td>13–16</td>
<td>\texttt{\output=\unvbox255} \texttt{\ifnum\outputpenalty<10000 \penalty\outputpenalty\fi}</td>
</tr>
<tr>
<td>A306</td>
<td>7</td>
<td>instead of a shelfful. In fact, the latter idea—to insert an italic correction—is prefer-</td>
</tr>
</tbody>
</table>
18.31. \(k = 1.38065 \times 10^{-16} \text{erg} \cdot \text{K}^{-1} \).

Connecticut Yankee come out with only nine or ten bad hyphens:

If a suitable starting letter is found, let it be in font \(f \). Hyphenation is abandoned unless the \texttt{hyphenchar} of \(f \) is a number between 0 and 255, inclusive. If this test is passed, \TeX{} continues to scan forward until coming to something that’s not one of the following three “admissible items”: (1) a character in font \(f \) whose \texttt{lccode} is nonzero; (2) a ligature formed entirely from characters of type (1); (3) an implicit kern. The first inadmissible item terminates this part of the process; the trial word consists of all the letters found in admissible items. Notice that all of these letters are in font \(f \).

\char, 43–45, 76, 86, 155, 283, 286.

\texttt{floatingpenalty}, 123–124, 272, 281, 363.

orphans, see widow words.

begin update_terminal; \{ now the user sees the prompt for sure \}

ignore = 9 \{ characters to ignore (^\^@) \}
active_char = 13 \{ characters that invoke macros (^) \}

or unset nodes; in particular, each mlist item appears in the variable-size part of \texttt{mem}, so the \texttt{type} field is always present.
between ‘fl’ and ‘y’, then \(m = 2 \), \(t = 2 \), and \(y_1 \) will be a ligature node for ‘fl’ followed by an

\[q_i(2), q_i(6): \textbf{begin} \texttt{cur}, r \leftarrow \texttt{rem}_\texttt{byte}(q); \{ |*:|, |*:| \} \]

\textbf{end}; \{ now we are in vertical mode, working on the list that will contain the display } \]

slightly. If \textit{autorounding} > 1, you get even more changes: Paths are perturbed slightly

tance is \(\text{length}(z_4 - z_1) \). But there’s a slicker solution: Just calculate

\[\text{abs \ ypart)((z_1 - z_2) \text{ rotated} - \text{angle}(z_3 - z_2)). \]

— LA ROCHEFOUCAULD, \textit{Maximes} (1665)

La Rochefoucauld, François VI, 313.

\textit{statements will be meaningful. We insert the label ‘exit’ just before the ‘end’ of a procedure in

begin \texttt{update}_\texttt{terminal}; \{ now the user sees the prompt for sure } \}

\textbf{define} \texttt{subscr}_\texttt{head}_\texttt{loc}(\#) \equiv \# + 1 \{ \textit{where value, subscr_head, and attr_head are } \}

\((y, -x) \) will appear in node \(p \). Similarly, a fourth-octant transformation will have been applied after the transition, so we will have \(x\texttt{coord}(q) = -x \) and \(y\texttt{coord}(q) = y \).
where \(x'(t) \geq 0 \) we have \(\text{right_type} = \text{first_octant} \) or \(\text{right_type} = \text{eighth_octant} \); in regions where \(x'(t) \leq 0 \), we have \(\text{right_type} = \text{fifth_octant} \) or \(\text{right_type} = \text{fourth_octant} \).