% \iffalse meta-comment % % Copyright (C) 2020 by Brian W. Mulligan % ----------------------------------------------------------- % % This file may be distributed and/or modified under the conditions of % the LaTeX Project Public License, either version 1.3c of this license % or (at your option) any later version. The latest version of this % license is in: % % http://www.latex-project.org/lppl.txt % % and version 1.3c or later is part of all distributions of LaTeX % version 2006/05/20 or later. % % \fi % % \iffalse %<*driver> \ProvidesFile{physconst.dtx} % %\NeedsTeXFormat{LaTeX2e}[1994/06/01] % \ProvidesPackage{physconst} %<*package> [2021/03/26 v1.1.2 physconst package] % %\RequirePackage{physunits} %\DeclareOption{shortconst}{ \typeout{physconst: reduced precision}% % \DeclareRobustCommand{\shortconst}{1} } %\DeclareOption{cgs}{ \typeout{physconst: using cgs instead of SI}% % \DeclareRobustCommand{\cgsunits}{1} } %\DeclareOption{unseparatedecimals}{ \typeout{physconst:% % long decimals are printed as x.xxxxxx instead of x.xxx~xxx}% % \DeclareRobustCommand{\unseparatedecimals}{1} } %\ProcessOptions\relax %<*driver> \documentclass{ltxdoc} \usepackage{xcolor} \usepackage{mdframed} \usepackage{physconst} \usepackage{imakeidx} \makeindex[columns=2] \usepackage[backref]{hyperref} \EnableCrossrefs \CodelineIndex \RecordChanges \OnlyDescription \begin{document} \DocInput{physconst.dtx} \PrintChanges \PrintIndex \end{document} % % \fi % % \CharacterTable % {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z % Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z % Digits \0\1\2\3\4\5\6\7\8\9 % Exclamation \! Double quote \" Hash (number) \# % Dollar \$ Percent \% Ampersand \& % Acute accent \' Left paren \( Right paren \) % Asterisk \* Plus \+ Comma \, % Minus \- Point \. Solidus \/ % Colon \: Semicolon \; Less than \< % Equals \= Greater than \> Question mark \? % Commercial at \@ Left bracket \[ Backslash \\ % Right bracket \] Circumflex \^ Underscore \_ % Grave accent \` Left brace \{ Vertical bar \| % Right brace \} Tilde \~} % % \changes{v1.0.0}{2020/01/25}{Initial version.} % \changes{v1.0.1}{2020/01/25}{Add options section and fix formatting.} % \changes{v1.0.2}{2020/01/26}{External changes for distribution.} % \changes{v1.1.0}{2020/02/03}{Add Earth, Sun, Jupiter mass and radius, fix Coulomb constant.} % \changes{v1.1.1}{2020/03/26}{Fixed bug that shortconst was having the opposite effect than intended. Additions and corrections to documentation.} % \changes{v1.1.2}{2021/03/26}{Corrected the value for Avogadro's Number. Prior version had a typo.} % % \GetFileInfo{physconst.dtx} % \DeclareRobustCommand{\fileversion}{v1.1.2} % \DeclareRobustCommand{\filedate}{2021/03/26} % % \DoNotIndex{\DeclareRobustCommand,\newenvironment,\DeclareRobustCommand% % ,\left,\right,\textbf,\mathrm} % % \title{The \textsf{physconst} package\thanks{This document corresponds to % % \textsf{physconst}~\fileversion, dated \filedate.}} % \author{Brian W. Mulligan \\ \texttt{bwmulligan@astronaos.com}} % % \maketitle % \setlength{\parindent}{0em} % \setlength{\parskip}{1em} % % \section{Introduction} % \changes{v1.1.1}{2020/03/26}{Corrected source of astronomical constants within the introduction.} % % % This package consists of several macros that are shorthand for a variety of % physical constants, e.g. the speed of light. % The package developed out of physics and astronomy classes that I have % taught and wanted to ensure that I had correct values for each constant % and did not wish to retype them every time I use them. % The constants can be used in two forms, the most accurate available values, % or versions that are rounded to 3 significant digits for use in typical % classroom settings, homework assignments, etc. % % Most constants are taken from CODATA 2018, with the exception of the % astronomical objects, whose values are taken from International Astronomical % Union specified values. Constants that are derived from true constants, e.g. % the fine structure constant, have been calculated using the accepted values % of the fundamental constants. % %\subsection{Options} % % There are three options available: |shortconst|, |cgs|, and % |unseparatedecimals|. % They can be invoked when the package is declared, e.g.\\ % |\usepackage[shortconst]{physconst}|. % % |shortconst| will reduce the precision to 3 digits for all constants. This % is intended when you don't want to have the details of the constants, just % the general value (e.g. $1.60\times10^{-19}\Coulomb$ instead of % $1.602\,176\,634\times10^{-19}\Coulomb$). % % |cgs| will provide all constants in cgs, i.e. the units used in astronomy. % % |unseparatedecimals| is for situations when you don't want spaces in the % decimal portion of full precision constants. E.g. the elementary charge % would appear as $1.602176634\times10^{-19}\Coulomb$ instead of % $1.602\,176\,634\times10^{-19}\Coulomb$. (notice the gaps between digits % in the latter.) % % \section{Prerequisites / Dependencies} % \changes{v1.1.1}{2020/03/26}{Added section for dependencies.} % % \subsection{General} % This package requires the \verb|physunits| package.% % \subsection{Generating Documentation} % \verb|hyperref|, \verb|xcolor|, \verb|mdframed|, and % \verb|imakeidx| packages are required to generate the documentation % (this file) for this package. % % \section{Acknowledgements} % \changes{v1.1.1}{2020/03/26}{Added section for acknowledgements.} % % The author would like to thank Dr. Florian Leupold for catching a glaring % error in the shortconst option, and M. Kloske for catching a typo in % Avogadro's Number. % % \section{Bug Reporting} % \changes{v1.1.1}{2020/03/26}{Added section for bug reporting.} % % Please report bugs or issues in this package using github, at % \url{https://github.com/astrobit/physconst/issues}.% % %\section{Macros} % % \changes{v1.1.1}{2020/03/26}{Upgraded macros to a section instead of a subsection.} % %\subsection{Normal Macros} % % The normal macros are the ones that you will typically use, whose values are % determined by the choice of options when the package is invoked. % % \subsubsection{Naming Convention} % % Each macro starts with a lower case `k' to indicate that it is a constant. % If the macro is of special units, e.g. eV, those units will be specified next. % If the macro is part of a fundamental unit group, it then gets the name of the % group, e.g. Mass, Charge, etc. % Finally is the details or name of the constants, e.g. Proton, Planck, etc. % %\subsubsection{Mass} % % %\index{Mass|usage} % % \DescribeMacro{\kMassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Electron|usage} % |\kMassElectron| is the mass of an electron. % % \DescribeMacro{\keVMassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Electron>in eV|usage} % |\keVMassElectron| is the mass of an electron. % % \DescribeMacro{\kMassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Electron|usage} % |\kMassElectronNumeric| is the numeric value of % the mass of an electron. % % \DescribeMacro{\keVMassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Electron>in eV|usage} % |\keVMassElectronNumeric| is the numeric value of % the mass of an electron. % % \DescribeMacro{\kMassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Proton|usage} % |\kMassProton| is the mass of a proton. % % \DescribeMacro{\keVMassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Proton>in eV|usage} % |\keVMassProton| is the mass of a proton. % % \DescribeMacro{\kMassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Proton|usage} % |\kMassProtonNumeric| is the numeric value of % the mass of a proton. % % \DescribeMacro{\keVMassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Proton>in eV|usage} % |\keVMassProtonNumeric| is the numeric value of % the mass of a proton. % % \DescribeMacro{\kMassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Hydrogen atom|usage} % |\kMassHydrogen| is the mass of a neutral hydrogen atom. % % \DescribeMacro{\keVMassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Hydrogen atom>in eV|usage} % |\keVMassHydrogen| is the mass of a neutral hydrogen atom. % % \DescribeMacro{\kMassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Hydrogen atom|usage} % |\kMassHydrogenNumeric| is the numeric value of % the mass of a neutral hydrogen atom. % % \DescribeMacro{\keVMassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>Hydrogen atom>in eV|usage} % |\keVMassHydrogenNumeric| is the numeric value of % the mass of a neutral hydrogen atom. % % \DescribeMacro{\kMassSun} % \index{Mass>Sun|usage} % |\kMassSun| is the mass of the Sun. % % \DescribeMacro{\kMassSunNumeric} % \index{Mass>Sun|usage} % |\kMassSunNumeric| is the numeric value of % the mass of the Sun. % % \DescribeMacro{\kMassEarth} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\kMassEarth| is the mass of the Earth. % % \DescribeMacro{\kMassEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\kMassEarthNumeric| is the numeric value of % the mass of the Earth. % % \DescribeMacro{\kMassJupiter} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\kMassJupiter| is the mass of Jupiter. % % \DescribeMacro{\kMassJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\kMassJupiterNumeric| is the numeric value of % the mass of Jupiter. % % \DescribeMacro{\kMassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>amu|usage} % |\kMassAMU| is the mass of an atomic mass unit. % % \DescribeMacro{\keVMassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>amu>in eV|usage} % |\keVMassAMU| is the mass of an atomic mass unit. % % \DescribeMacro{\kMassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>amu|usage} % |\kMassAMUNumeric| is the numeric value of % the mass of an atomic mass unit. % % \DescribeMacro{\keVMassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % \index{Mass>amu>in eV|usage} % |\keVMassAMUNumeric| is the numeric value of % the mass of an atomic mass unit. % % %\subsubsection{Charge} % % %\index{Charge|usage} % % \DescribeMacro{\kChargeFundamental} % \index{Charge>Elementary|usage} % |\kChargeFundamental| is the fundamental charge. % % \DescribeMacro{\kChargeFundamentalNumeric} % \index{Charge>Elementary|usage} % |\kChargeFundamentalNumeric| is the numeric value of % the fundamental charge. % % \DescribeMacro{\kChargeElectron} % \index{Charge>Electron|usage} % |\kChargeElectron| is the charge of an electron. % % \DescribeMacro{\kChargeElectronNumeric} % \index{Charge>Electron|usage} % |\kChargeElectronNumeric| is the numeric value of % the charge of an electron. % % \DescribeMacro{\kChargeProton} % \index{Charge>Proton|usage} % |\kChargeProton| is the charge of a proton. % % \DescribeMacro{\kChargeProtonNumeric} % \index{Charge>Proton|usage} % |\kChargeProtonNumeric| is the numeric value of % the charge of a proton. % % %\subsubsection{Distances and Lengths} % % %\index{Distances and Lengths|usage} % % \DescribeMacro{\kRadiusBohr} % \index{Distances and Lengths>Bohr Radius|usage} % |\kRadiusBohr| is Bohr radius of an atom. % % \DescribeMacro{\kRadiusBohrNumeric} % \index{Distances and Lengths>Bohr Radius|usage} % |\kRadiusBohrNumeric| is the numeric value of % Bohr radius of an atom. % % \DescribeMacro{\kAstronomicalUnit} % \index{Distances and Lengths>Astronomical Unit|usage} % |\kAstronomicalUnit| is the astronomical unit (the average distance between % the Earth and the Sun). % % \DescribeMacro{\kAstronomicalUnitNumeric} % \index{Distances and Lengths>Astronomical Unit|usage} % |\kAstronomicalUnitNumeric| is the numeric value of % the astronomical unit (the average distance between the % Earth and the Sun). % % \DescribeMacro{\kParsec} % \index{Distances and Lengths>Parsec|usage} % |\kParsec| is the length of a parsec ($\frac{648000\au}{\pi}$). % % \DescribeMacro{\kParsecNumeric} % \index{Distances and Lengths>Parsec|usage} % |\kParsecNumeric| is the numeric value of % the length of a parsec ($\frac{648000\au}{\pi}$). % % \DescribeMacro{\kRadiusSun} % \index{Distances and Lengths>Solar Radius|usage} % |\kRadiusSun| is the mean radius of the Sun. % % \DescribeMacro{\kRadiusSunNumeric} % \index{Distances and Lengths>Solar Radius|usage} % |\kRadiusSunNumeric| is the numeric value of % the mean radius of the Sun. % % \DescribeMacro{\kRadiusEarth} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\kRadiusEarth| is the mean radius of the Earth. % % \DescribeMacro{\kRadiusEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\kRadiusEarthNumeric| is the numeric value of % the mean radius of the Earth. % % \DescribeMacro{\kRadiusJupiter} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\kRadiusJupiter| is the mean radius of Jupiter. % % \DescribeMacro{\kRadiusJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\kRadiusJupiterNumeric| is the numeric value of % the mean radius of Jupiter. % % %\subsubsection{Energy, Power, and Luminosity} % % %\index{Energy, Power, and Luminosity|usage} % % \DescribeMacro{\kRydberg} % \index{Energy, Power, and Luminosity>Rydberg|usage} % |\kRydberg| is the Rydberg energy (the binding energy of Hydrogen). % % \DescribeMacro{\keVRydberg} % \index{Energy, Power, and Luminosity>Rydberg>in eV|usage} % |\keVRydberg| is the Rydberg energy (the binding energy of Hydrogen). % % \DescribeMacro{\kRydbergNumeric} % \index{Energy, Power, and Luminosity>Rydberg|usage} % |\kRydbergNumeric| is the numeric value of % the Rydberg energy (the binding energy of Hydrogen). % % \DescribeMacro{\keVRydbergNumeric} % \index{Energy, Power, and Luminosity>Rydberg>in eV|usage} % |\keVRydbergNumeric| is the numeric value of % the Rydberg energy (the binding energy of Hydrogen). % % \DescribeMacro{\kLuminositySun} % \index{Energy, Power, and Luminosity>Solar Luminosity|usage} % |\kLuminositySun| is the luminosity of the Sun. % % \DescribeMacro{\kLuminositySunNumeric} % \index{Energy, Power, and Luminosity>Solar Luminosity|usage} % |\kLuminositySunNumeric| is the numeric value of % the luminosity of the Sun. % % %\subsubsection{Pressure} % % %\index{Pressure|usage} % % \DescribeMacro{\kPressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % \index{Pressure>Standard Atmosphere|usage} % |\kPressureAtmosphere| is the standard atmospheric pressure. % % \DescribeMacro{\kPressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % \index{Pressure>Standard Atmosphere|usage} % |\kPressureAtmosphereNumeric| is the numeric value of % the standard atmospheric pressure. % % \DescribeMacro{\kPressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % \index{Pressure>Standard Pressure|usage} % |\kPressureStandard| is the standard atmospheric pressure. % % \DescribeMacro{\kPressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % \index{Pressure>Standard Pressure|usage} % |\kPressureStandardNumeric| is the numeric value of % the standard atmospheric pressure. % % %\subsubsection{Velocity, Speed and Acceleration} % % %\index{Velocity, Speed and Acceleration|usage} % % \DescribeMacro{\kSpeedLight} % \index{Velocity, Speed and Acceleration>Speed of Light|usage} % |\kSpeedLight| is the speed of light. % % \DescribeMacro{\kSpeedLightNumeric} % \index{Velocity, Speed and Acceleration>Speed of Light|usage} % |\kSpeedLightNumeric| is the numeric value of % the speed of light. % % \DescribeMacro{\kAccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % \index{Velocity, Speed and Acceleration>Acceleration due to Gravity|usage} % |\kAccelGravity| is the accelertion due to gravity at the surface of the % Earth. % % \DescribeMacro{\kAccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % \index{Velocity, Speed and Acceleration>Acceleration due to Gravity|usage} % |\kAccelGravityNumeric| is the numeric value of % the accelertion due to gravity at the surface of the Earth. % % %\subsubsection{Other Constants} % % %\index{Other Constants|usage} % % \DescribeMacro{\kCoulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Coulomb Constant|usage} % |\kCoulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$). % % \DescribeMacro{\kCoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Coulomb Constant|usage} % |\kCoulombNumeric| is the numeric value of % the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$). % % \DescribeMacro{\kVacuumPermittivity} % \index{Other Constants>Vacuum Permittivity|usage} % |\kVacuumPermittivity| is the electric permittivity of the vacuum. % % \DescribeMacro{\kVacuumPermittivityNumeric} % \index{Other Constants>Vacuum Permittivity|usage} % |\kVacuumPermittivityNumeric| is the numeric value of % the electric permittivity of the vacuum. % % \DescribeMacro{\kVacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % \index{Other Constants>Vacuum Permeability|usage} % |\kVacuumPermeability| is the magnetic permeability of the vacuum. % % \DescribeMacro{\kVacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % \index{Other Constants>Vacuum Permeability|usage} % |\kVacuumPermeabilityNumeric| is the numeric value of % the magnetic permeability of the vacuum. % % \DescribeMacro{\kVacuumImpedance} % \index{Other Constants>Vacuum Impedance|usage} % |\kVacuumImpedance| is the characteristic impedance of the vacuum. % % \DescribeMacro{\kVacuumImpedanceNumeric} % \index{Other Constants>Vacuum Impedance|usage} % |\kVacuumImpedanceNumeric| is the numeric value of % the characteristic impedance of the vacuum. % % \DescribeMacro{\kBoltzmann} % \index{Other Constants>Boltzmann|usage} % |\kBoltzmann| is the Boltzmann constant. % % \DescribeMacro{\keVBoltzmann} % \index{Other Constants>Boltzmann>in eV|usage} % |\keVBoltzmann| is the Boltzmann constant. % % \DescribeMacro{\kBoltzmannNumeric} % \index{Other Constants>Boltzmann|usage} % |\kBoltzmannNumeric| is the numeric value of % the Boltzmann constant. % % \DescribeMacro{\keVBoltzmannNumeric} % \index{Other Constants>Boltzmann>in eV|usage} % |\keVBoltzmannNumeric| is the numeric value of % the Boltzmann constant. % % \DescribeMacro{\kPlanck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Planck|usage} % |\kPlanck| is the Planck constant. % % \DescribeMacro{\keVPlanck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Planck>in eV|usage} % |\keVPlanck| is the Planck constant. % % \DescribeMacro{\kPlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Planck|usage} % |\kPlanckNumeric| is the numeric value of % the Planck constant. % % \DescribeMacro{\keVPlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Planck>in eV|usage} % |\keVPlanckNumeric| is the numeric value of % the Planck constant. % % \DescribeMacro{\kPlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Reduced Planck|usage} % |\kPlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$. % % \DescribeMacro{\keVPlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Reduced Planck>in eV|usage} % |\keVPlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$. % % \DescribeMacro{\kPlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Reduced Planck|usage} % |\kPlanckReducedNumeric| is the numeric value of % the Reduced Planck constant $\left(\frac{h}{2\pi}\right)$. % % \DescribeMacro{\keVPlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Reduced Planck>in eV|usage} % |\keVPlanckReducedNumeric| is the numeric value of % the Reduced Planck constant $\left(\frac{h}{2\pi}\right)$. % % \DescribeMacro{\kGravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % \index{Other Constants>Newton's Gravitational Constant|usage} % |\kGravity| is Newton's gravitational constant. % % \DescribeMacro{\kGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % \index{Other Constants>Newton's Gravitational Constant|usage} % |\kGravityNumeric| is the numeric value of % Newton's gravitational constant. % % \DescribeMacro{\kStefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Stefan-Boltzmann|usage} % |\kStefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$. % % \DescribeMacro{\kStefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \index{Other Constants>Stefan-Boltzmann|usage} % |\kStefanBoltzmannNumeric| is the numeric value of % the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$. % % \DescribeMacro{\kRadiation} % \index{Other Constants>Radiation|usage} % |\kRadiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$. % % \DescribeMacro{\kRadiationNumeric} % \index{Other Constants>Radiation|usage} % |\kRadiationNumeric| is the numeric value of % the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$. % % \DescribeMacro{\kFineStructure} % \index{Other Constants>Fine Structure|usage} % |\kFineStructure| is the fine structure constant. % % \DescribeMacro{\kFineStructureNumeric} % \index{Other Constants>Fine Structure|usage} % |\kFineStructureNumeric| is the numeric value of % the fine structure constant. % % \DescribeMacro{\kFineStructureReciprocal} % \index{Other Constants>Fine Structure>Reciprocal|usage} % |\kFineStructureReciprocal| is the reciprocal of the fine structure constant. % % \DescribeMacro{\kFineStructureReciprocalNumeric} % \index{Other Constants>Fine Structure>Reciprocal|usage} % |\kFineStructureReciprocalNumeric| is the numeric value of % the reciprocal of the fine structure constant. % % \DescribeMacro{\kAvogadro} % \index{Other Constants>Avogadro's Number|usage} % |\kAvogadro| is Avogadro's Number (the number of particles in a mole). % % \DescribeMacro{\kAvogadroNumeric} % \index{Other Constants>Avogadro's Number|usage} % |\kAvogadroNumeric| is the numeric value of % Avogadro's Number (the number of particles in a mole). % % %\subsection{Detailed Macros} % % These macros are used to access the constants with specific units and % precision. They require use of \textbackslash makeatletter and % \textbackslash makeatother in order to be used. They are used internally % by physconst to define the macros that are normally used (those described % above. % % \subsubsection{NamingConvention} % The detailed macros are named like \k@units@precision@name. The units % specify which units the constant is in (SI, cgs, or eV). For constants that % are independent of the unit system (e.g. Avogadro's number and the fine % structure constant), the units are omitted. The precision is either `short' % or `full' to indicate how much precision is included in the number. All short % precision constants have 3 significant figures. The precision of full % precision constants vary by their definition and/or inputs. Finally, the % name or description of the constant appears. % %\subsubsection{Mass} % % \DescribeMacro{\k@SI@short@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassElectron| is the mass of an electron in SI units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassElectron| is the mass of an electron in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassElectron| is the mass of an electron in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassElectron| is the mass of an electron in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassElectron| is the mass of an electron in eV with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@MassElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@MassElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassElectron| is the mass of an electron in eV with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@MassElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@MassElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassElectronNumeric| is a mathematical value of % the mass of an electron in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassElectronNumeric| is a mathematical value of % the mass of an electron in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassElectronNumeric| is a mathematical value of % the mass of an electron in cgs units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassElectronNumeric| is a mathematical value of % the mass of an electron in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassElectronNumeric| is a mathematical value of % the mass of an electron in eV with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@MassElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@MassElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassElectronNumeric| is a mathematical value of % the mass of an electron in eV with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@MassElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@MassElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassProton| is the mass of a proton in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassProton| is the mass of a proton in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassProton| is the mass of a proton in cgs units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassProton| is the mass of a proton in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassProton| is the mass of a proton in eV with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@MassProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@MassProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassProton| is the mass of a proton in eV with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@MassProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@MassProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassProtonNumeric| is a mathematical value of % the mass of a proton in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassProtonNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassProtonNumeric| is a mathematical value of % the mass of a proton in SI units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassProtonNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassProtonNumeric| is a mathematical value of % the mass of a proton in cgs units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassProtonNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassProtonNumeric| is a mathematical value of % the mass of a proton in cgs units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassProtonNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassProtonNumeric| is a mathematical value of % the mass of a proton in eV with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@MassProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@MassProtonNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassProtonNumeric| is a mathematical value of % the mass of a proton in eV with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@MassProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@MassProtonNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassHydrogen| is the mass of a neutral hydrogen atom in SI units % with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassHydrogen\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassHydrogen}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassHydrogen| is the mass of a neutral hydrogen atom in SI units % with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassHydrogen\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassHydrogen}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassHydrogen| is the mass of a neutral hydrogen atom in cgs % units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassHydrogen\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassHydrogen}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassHydrogen| is the mass of a neutral hydrogen atom in cgs % units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassHydrogen\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassHydrogen}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassHydrogen| is the mass of a neutral hydrogen atom in eV with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@MassHydrogen\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@MassHydrogen}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassHydrogen| is the mass of a neutral hydrogen atom in eV with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@MassHydrogen\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@MassHydrogen}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassHydrogenNumeric| is a mathematical value of % the mass of a neutral hydrogen atom in SI units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassHydrogenNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassHydrogenNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassHydrogenNumeric| is a mathematical value of % the mass of a neutral hydrogen atom in SI units with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassHydrogenNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassHydrogenNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassHydrogenNumeric| is a mathematical value of % the mass of a neutral hydrogen atom in cgs units % with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassHydrogenNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassHydrogenNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassHydrogenNumeric| is a mathematical value of % the mass of a neutral hydrogen atom in cgs units % with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassHydrogenNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassHydrogenNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassHydrogenNumeric| is a mathematical value of % the mass of a neutral hydrogen atom in eV with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@MassHydrogenNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@MassHydrogenNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassHydrogenNumeric| is a mathematical value of % the mass of a neutral hydrogen atom in eV with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@MassHydrogenNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@MassHydrogenNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@MassSun} % |\k@SI@short@MassSun| is the mass of the Sun in SI units with reduced % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassSun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassSun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassSun} % |\k@SI@full@MassSun| is the mass of the Sun in SI units with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassSun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassSun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassSun} % |\k@cgs@short@MassSun| is the mass of the Sun in cgs units with reduced % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassSun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassSun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassSun} % |\k@cgs@full@MassSun| is the mass of the Sun in cgs units with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassSun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassSun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@MassSunNumeric} % |\k@SI@short@MassSunNumeric| is a mathematical value of % the mass of the Sun in SI units with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassSunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassSunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassSunNumeric} % |\k@SI@full@MassSunNumeric| is a mathematical value of % the mass of the Sun in SI units with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassSunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassSunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassSunNumeric} % |\k@cgs@short@MassSunNumeric| is a mathematical value of % the mass of the Sun in cgs units with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassSunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassSunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassSunNumeric} % |\k@cgs@full@MassSunNumeric| is a mathematical value of % the mass of the Sun in cgs units with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassSunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassSunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@MassEarth} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\k@short@MassEarth| is the mass of the Earth with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@MassEarth\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@MassEarth}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@MassEarth} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\k@full@MassEarth| is the mass of the Earth with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@MassEarth\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@MassEarth}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@MassEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\k@short@MassEarthNumeric| is a mathematical value of % the mass of the Earth with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@MassEarthNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@MassEarthNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@MassEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\k@full@MassEarthNumeric| is a mathematical value of % the mass of the Earth with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@MassEarthNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@MassEarthNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@MassJupiter} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\k@short@MassJupiter| is the mass of Jupiter with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@MassJupiter\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@MassJupiter}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@MassJupiter} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\k@full@MassJupiter| is the mass of Jupiter with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@MassJupiter\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@MassJupiter}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@MassJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\k@short@MassJupiterNumeric| is a mathematical value of % the mass of Jupiter with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@MassJupiterNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@MassJupiterNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@MassJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\k@full@MassJupiterNumeric| is a mathematical value of % the mass of Jupiter with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@MassJupiterNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@MassJupiterNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassAMU| is the mass of an atomic mass unit in SI units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassAMU\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassAMU}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassAMU| is the mass of an atomic mass unit in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassAMU\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassAMU}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassAMU| is the mass of an atomic mass unit in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassAMU\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassAMU}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassAMU| is the mass of an atomic mass unit in cgs units with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassAMU\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassAMU}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassAMU| is the mass of an atomic mass unit in eV with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@MassAMU\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@MassAMU}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassAMU| is the mass of an atomic mass unit in eV with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@MassAMU\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@MassAMU}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassAMUNumeric| is a mathematical value of % the mass of an atomic mass unit in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@MassAMUNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@MassAMUNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassAMUNumeric| is a mathematical value of % the mass of an atomic mass unit in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@MassAMUNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@MassAMUNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassAMUNumeric| is a mathematical value of % the mass of an atomic mass unit in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@MassAMUNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@MassAMUNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassAMUNumeric| is a mathematical value of % the mass of an atomic mass unit in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@MassAMUNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@MassAMUNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassAMUNumeric| is a mathematical value of % the mass of an atomic mass unit in eV with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@MassAMUNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@MassAMUNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassAMUNumeric| is a mathematical value of % the mass of an atomic mass unit in eV with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@MassAMUNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@MassAMUNumeric}\end{mdframed} % \makeatother % % %\subsubsection{Charge} % % \DescribeMacro{\k@SI@short@ChargeFundamental} % |\k@SI@short@ChargeFundamental| is the fundamental charge in SI units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@ChargeFundamental\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@ChargeFundamental}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@ChargeFundamental} % |\k@SI@full@ChargeFundamental| is the fundamental charge in SI units with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@ChargeFundamental\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@ChargeFundamental}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@ChargeFundamental} % |\k@cgs@short@ChargeFundamental| is the fundamental charge in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@ChargeFundamental\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@ChargeFundamental}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@ChargeFundamental} % |\k@cgs@full@ChargeFundamental| is the fundamental charge in cgs units with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@ChargeFundamental\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@ChargeFundamental}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@ChargeFundamentalNumeric} % |\k@SI@short@ChargeFundamentalNumeric| is a mathematical value of % the fundamental charge in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@ChargeFundamentalNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@ChargeFundamentalNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@ChargeFundamentalNumeric} % |\k@SI@full@ChargeFundamentalNumeric| is a mathematical value of % the fundamental charge in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@ChargeFundamentalNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@ChargeFundamentalNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@ChargeFundamentalNumeric} % |\k@cgs@short@ChargeFundamentalNumeric| is a mathematical value of % the fundamental charge in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@ChargeFundamentalNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@ChargeFundamentalNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@ChargeFundamentalNumeric} % |\k@cgs@full@ChargeFundamentalNumeric| is a mathematical value of % the fundamental charge in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@ChargeFundamentalNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@ChargeFundamentalNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@ChargeElectron} % |\k@SI@short@ChargeElectron| is the charge of an electron in SI units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@ChargeElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@ChargeElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@ChargeElectron} % |\k@SI@full@ChargeElectron| is the charge of an electron in SI units with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@ChargeElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@ChargeElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@ChargeElectron} % |\k@cgs@short@ChargeElectron| is the charge of an electron in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@ChargeElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@ChargeElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@ChargeElectron} % |\k@cgs@full@ChargeElectron| is the charge of an electron in cgs units with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@ChargeElectron\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@ChargeElectron}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@ChargeElectronNumeric} % |\k@SI@short@ChargeElectronNumeric| is a mathematical value of % the charge of an electron in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@ChargeElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@ChargeElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@ChargeElectronNumeric} % |\k@SI@full@ChargeElectronNumeric| is a mathematical value of % the charge of an electron in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@ChargeElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@ChargeElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@ChargeElectronNumeric} % |\k@cgs@short@ChargeElectronNumeric| is a mathematical value of % the charge of an electron in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@ChargeElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@ChargeElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@ChargeElectronNumeric} % |\k@cgs@full@ChargeElectronNumeric| is a mathematical value of % the charge of an electron in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@ChargeElectronNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@ChargeElectronNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@ChargeProton} % |\k@SI@short@ChargeProton| is the charge of a proton in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@ChargeProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@ChargeProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@ChargeProton} % |\k@SI@full@ChargeProton| is the charge of a proton in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@ChargeProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@ChargeProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@ChargeProton} % |\k@cgs@short@ChargeProton| is the charge of a proton in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@ChargeProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@ChargeProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@ChargeProton} % |\k@cgs@full@ChargeProton| is the charge of a proton in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@ChargeProton\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@ChargeProton}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@ChargeProtonNumeric} % |\k@SI@short@ChargeProtonNumeric| is a mathematical value of % the charge of a proton in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@ChargeProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@ChargeProtonNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@ChargeProtonNumeric} % |\k@SI@full@ChargeProtonNumeric| is a mathematical value of % the charge of a proton in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@ChargeProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@ChargeProtonNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@ChargeProtonNumeric} % |\k@cgs@short@ChargeProtonNumeric| is a mathematical value of % the charge of a proton in cgs units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@ChargeProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@ChargeProtonNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@ChargeProtonNumeric} % |\k@cgs@full@ChargeProtonNumeric| is a mathematical value of % the charge of a proton in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@ChargeProtonNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@ChargeProtonNumeric}\end{mdframed} % \makeatother % % %\subsubsection{Distances and Lengths} % % \DescribeMacro{\k@SI@short@RadiusBohr} % |\k@SI@short@RadiusBohr| is Bohr radius of an atom in SI units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@RadiusBohr\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@RadiusBohr}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@RadiusBohr} % |\k@SI@full@RadiusBohr| is Bohr radius of an atom in SI units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@RadiusBohr\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@RadiusBohr}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@RadiusBohr} % |\k@cgs@short@RadiusBohr| is Bohr radius of an atom in cgs units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@RadiusBohr\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@RadiusBohr}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@RadiusBohr} % |\k@cgs@full@RadiusBohr| is Bohr radius of an atom in cgs units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@RadiusBohr\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@RadiusBohr}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@RadiusBohrNumeric} % |\k@SI@short@RadiusBohrNumeric| is a mathematical value of % Bohr radius of an atom in SI units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@RadiusBohrNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@RadiusBohrNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@RadiusBohrNumeric} % |\k@SI@full@RadiusBohrNumeric| is a mathematical value of % Bohr radius of an atom in SI units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@RadiusBohrNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@RadiusBohrNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@RadiusBohrNumeric} % |\k@cgs@short@RadiusBohrNumeric| is a mathematical value of % Bohr radius of an atom in cgs units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@RadiusBohrNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@RadiusBohrNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@RadiusBohrNumeric} % |\k@cgs@full@RadiusBohrNumeric| is a mathematical value of % Bohr radius of an atom in cgs units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@RadiusBohrNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@RadiusBohrNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@AstronomicalUnit} % |\k@SI@short@AstronomicalUnit| is the astronomical unit (the average distance % between the Earth and the Sun) in SI units with reduced precision. % (IAU~Resolution~B2~2012) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@AstronomicalUnit\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@AstronomicalUnit}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@AstronomicalUnit} % |\k@SI@full@AstronomicalUnit| is the astronomical unit (the average distance % between the Earth and the Sun) in SI units with full precision. % (IAU~Resolution~B2~2012) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@AstronomicalUnit\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@AstronomicalUnit}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@AstronomicalUnit} % |\k@cgs@short@AstronomicalUnit| is the astronomical unit (the average % distance between the Earth and the Sun) in cgs units with reduced precision. % (IAU~Resolution~B2~2012) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@AstronomicalUnit\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@AstronomicalUnit}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@AstronomicalUnit} % |\k@cgs@full@AstronomicalUnit| is the astronomical unit (the average distance % between the Earth and the Sun) in cgs units with full precision. % (IAU~Resolution~B2~2012) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@AstronomicalUnit\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@AstronomicalUnit}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@AstronomicalUnitNumeric} % |\k@SI@short@AstronomicalUnitNumeric| is a mathematical value of % the astronomical unit (the average distance % between the Earth and the Sun) in SI units with reduced precision. % (IAU~Resolution~B2~2012) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@AstronomicalUnitNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@AstronomicalUnitNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@AstronomicalUnitNumeric} % |\k@SI@full@AstronomicalUnitNumeric| is a mathematical value of % the astronomical unit (the average distance % between the Earth and the Sun) in SI units with full precision. % (IAU~Resolution~B2~2012) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@AstronomicalUnitNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@AstronomicalUnitNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@AstronomicalUnitNumeric} % |\k@cgs@short@AstronomicalUnitNumeric| is a mathematical value of % the astronomical unit (the average distance % between the Earth and the Sun) in cgs units with reduced precision. % (IAU~Resolution~B2~2012) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@AstronomicalUnitNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@AstronomicalUnitNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@AstronomicalUnitNumeric} % |\k@cgs@full@AstronomicalUnitNumeric| is a mathematical value of % the astronomical unit (the average distance % between the Earth and the Sun) in cgs units with full precision. % (IAU~Resolution~B2~2012) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@AstronomicalUnitNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@AstronomicalUnitNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@Parsec} % |\k@SI@short@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in % SI units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@Parsec\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@Parsec}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@Parsec} % |\k@SI@full@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in SI % units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@Parsec\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@Parsec}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@Parsec} % |\k@cgs@short@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in % cgs units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@Parsec\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@Parsec}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@Parsec} % |\k@cgs@full@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in % cgs units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@Parsec\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@Parsec}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@ParsecNumeric} % |\k@SI@short@ParsecNumeric| is a mathematical value of % the length of a parsec ($\frac{648000\au}{\pi}$) in SI % units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@ParsecNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@ParsecNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@ParsecNumeric} % |\k@SI@full@ParsecNumeric| is a mathematical value of % the length of a parsec ($\frac{648000\au}{\pi}$) in SI % units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@ParsecNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@ParsecNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@ParsecNumeric} % |\k@cgs@short@ParsecNumeric| is a mathematical value of % the length of a parsec ($\frac{648000\au}{\pi}$) in cgs % units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@ParsecNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@ParsecNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@ParsecNumeric} % |\k@cgs@full@ParsecNumeric| is a mathematical value of % the length of a parsec ($\frac{648000\au}{\pi}$) in cgs % units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@ParsecNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@ParsecNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@RadiusSun} % |\k@SI@short@RadiusSun| is the mean radius of the Sun in SI units with % reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@RadiusSun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@RadiusSun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@RadiusSun} % |\k@SI@full@RadiusSun| is the mean radius of the Sun in SI units with full % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@RadiusSun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@RadiusSun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@RadiusSun} % |\k@cgs@short@RadiusSun| is the mean radius of the Sun in cgs units with % reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@RadiusSun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@RadiusSun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@RadiusSun} % |\k@cgs@full@RadiusSun| is the mean radius of the Sun in cgs units with full % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@RadiusSun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@RadiusSun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@RadiusSunNumeric} % |\k@SI@short@RadiusSunNumeric| is a mathematical value of % the mean radius of the Sun in SI units with reduced % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@RadiusSunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@RadiusSunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@RadiusSunNumeric} % |\k@SI@full@RadiusSunNumeric| is a mathematical value of % the mean radius of the Sun in SI units with full % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@RadiusSunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@RadiusSunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@RadiusSunNumeric} % |\k@cgs@short@RadiusSunNumeric| is a mathematical value of % the mean radius of the Sun in cgs units with reduced % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@RadiusSunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@RadiusSunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@RadiusSunNumeric} % |\k@cgs@full@RadiusSunNumeric| is a mathematical value of % the mean radius of the Sun in cgs units with full % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@RadiusSunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@RadiusSunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@RadiusEarth} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\k@short@RadiusEarth| is the mean radius of the Earth with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@RadiusEarth\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@RadiusEarth}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@RadiusEarth} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\k@full@RadiusEarth| is the mean radius of the Earth with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@RadiusEarth\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@RadiusEarth}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@RadiusEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\k@short@RadiusEarthNumeric| is a mathematical value of % the mean radius of the Earth with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@RadiusEarthNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@RadiusEarthNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@RadiusEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\k@full@RadiusEarthNumeric| is a mathematical value of % the mean radius of the Earth with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@RadiusEarthNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@RadiusEarthNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@RadiusJupiter} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\k@short@RadiusJupiter| is the mean radius of Jupiter with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@RadiusJupiter\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@RadiusJupiter}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@RadiusJupiter} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\k@full@RadiusJupiter| is the mean radius of Jupiter with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@RadiusJupiter\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@RadiusJupiter}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@RadiusJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\k@short@RadiusJupiterNumeric| is a mathematical value of % the mean radius of Jupiter with reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@RadiusJupiterNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@RadiusJupiterNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@RadiusJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\k@full@RadiusJupiterNumeric| is a mathematical value of % the mean radius of Jupiter with full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@RadiusJupiterNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@RadiusJupiterNumeric}\end{mdframed} % \makeatother % % %\subsubsection{Energy, Power, and Luminosity} % % \DescribeMacro{\k@SI@short@Rydberg} % |\k@SI@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in SI units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@Rydberg\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@Rydberg}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@Rydberg} % |\k@SI@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in SI units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@Rydberg\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@Rydberg}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@Rydberg} % |\k@cgs@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in cgs units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@Rydberg\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@Rydberg}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@Rydberg} % |\k@cgs@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in cgs units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@Rydberg\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@Rydberg}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@Rydberg} % |\k@eV@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in eV with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@Rydberg\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@Rydberg}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@Rydberg} % |\k@eV@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in eV with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@Rydberg\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@Rydberg}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@RydbergNumeric} % |\k@SI@short@RydbergNumeric| is a mathematical value of % the Rydberg energy (the binding energy of Hydrogen) in SI % units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@RydbergNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@RydbergNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@RydbergNumeric} % |\k@SI@full@RydbergNumeric| is a mathematical value of % the Rydberg energy (the binding energy of Hydrogen) in SI % units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@RydbergNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@RydbergNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@RydbergNumeric} % |\k@cgs@short@RydbergNumeric| is a mathematical value of % the Rydberg energy (the binding energy of Hydrogen) in % cgs units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@RydbergNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@RydbergNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@RydbergNumeric} % |\k@cgs@full@RydbergNumeric| is a mathematical value of % the Rydberg energy (the binding energy of Hydrogen) in % cgs units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@RydbergNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@RydbergNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@RydbergNumeric} % |\k@eV@short@RydbergNumeric| is a mathematical value of % the Rydberg energy (the binding energy of Hydrogen) in eV % with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@RydbergNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@RydbergNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@RydbergNumeric} % |\k@eV@full@RydbergNumeric| is a mathematical value of % the Rydberg energy (the binding energy of Hydrogen) in eV % with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@RydbergNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@RydbergNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@LuminositySun} % |\k@SI@short@LuminositySun| is the luminosity of the Sun in SI units with % reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@LuminositySun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@LuminositySun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@LuminositySun} % |\k@SI@full@LuminositySun| is the luminosity of the Sun in SI units with full % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@LuminositySun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@LuminositySun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@LuminositySun} % |\k@cgs@short@LuminositySun| is the luminosity of the Sun in cgs units with % reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@LuminositySun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@LuminositySun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@LuminositySun} % |\k@cgs@full@LuminositySun| is the luminosity of the Sun in cgs units with % full precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@LuminositySun\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@LuminositySun}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@LuminositySunNumeric} % |\k@SI@short@LuminositySunNumeric| is a mathematical value of % the luminosity of the Sun in SI units with reduced % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@LuminositySunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@LuminositySunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@LuminositySunNumeric} % |\k@SI@full@LuminositySunNumeric| is a mathematical value of % the luminosity of the Sun in SI units with full % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@LuminositySunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@LuminositySunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@LuminositySunNumeric} % |\k@cgs@short@LuminositySunNumeric| is a mathematical value of % the luminosity of the Sun in cgs units with % reduced precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@LuminositySunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@LuminositySunNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@LuminositySunNumeric} % |\k@cgs@full@LuminositySunNumeric| is a mathematical value of % the luminosity of the Sun in cgs units with full % precision. % (IAU~Resolution~B3~2015) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@LuminositySunNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@LuminositySunNumeric}\end{mdframed} % \makeatother % % %\subsubsection{Pressure} % % \DescribeMacro{\k@SI@short@PressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@short@PressureAtmosphere| is the standard atmospheric pressure in SI % units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@PressureAtmosphere\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@PressureAtmosphere}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@PressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@full@PressureAtmosphere| is the standard atmospheric pressure in SI % units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@PressureAtmosphere\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@PressureAtmosphere}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@PressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@short@PressureAtmosphere| is the standard atmospheric pressure in cgs % units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@PressureAtmosphere\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@PressureAtmosphere}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@PressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@full@PressureAtmosphere| is the standard atmospheric pressure in cgs % units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@PressureAtmosphere\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@PressureAtmosphere}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@PressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@short@PressureAtmosphereNumeric| is a mathematical value of % the standard atmospheric pressure in SI units % with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@PressureAtmosphereNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@PressureAtmosphereNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@PressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@full@PressureAtmosphereNumeric| is a mathematical value of % the standard atmospheric pressure in SI units % with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@PressureAtmosphereNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@PressureAtmosphereNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@PressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@short@PressureAtmosphereNumeric| is a mathematical value of % the standard atmospheric pressure in cgs % units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@PressureAtmosphereNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@PressureAtmosphereNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@PressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@full@PressureAtmosphereNumeric| is a mathematical value of % the standard atmospheric pressure in cgs units % with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@PressureAtmosphereNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@PressureAtmosphereNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@PressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@short@PressureStandard| is the standard atmospheric pressure in SI % units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@PressureStandard\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@PressureStandard}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@PressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@full@PressureStandard| is the standard atmospheric pressure in SI % units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@PressureStandard\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@PressureStandard}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@PressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@short@PressureStandard| is the standard atmospheric pressure in cgs % units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@PressureStandard\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@PressureStandard}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@PressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@full@PressureStandard| is the standard atmospheric pressure in cgs % units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@PressureStandard\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@PressureStandard}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@PressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@short@PressureStandardNumeric| is a mathematical value of % the standard atmospheric pressure in SI units % with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@PressureStandardNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@PressureStandardNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@PressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@full@PressureStandardNumeric| is a mathematical value of % the standard atmospheric pressure in SI units % with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@PressureStandardNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@PressureStandardNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@PressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@short@PressureStandardNumeric| is a mathematical value of % the standard atmospheric pressure in cgs units % with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@PressureStandardNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@PressureStandardNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@PressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@full@PressureStandardNumeric| is a mathematical value of % the standard atmospheric pressure in cgs units % with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@PressureStandardNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@PressureStandardNumeric}\end{mdframed} % \makeatother % % %\subsubsection{Velocity, Speed and Acceleration} % % \DescribeMacro{\k@SI@short@SpeedLight} % |\k@SI@short@SpeedLight| is the speed of light in SI units with reduced % precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@SpeedLight\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@SpeedLight}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@SpeedLight} % |\k@SI@full@SpeedLight| is the speed of light in SI units with full precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@SpeedLight\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@SpeedLight}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@SpeedLight} % |\k@cgs@short@SpeedLight| is the speed of light in cgs units with reduced % precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@SpeedLight\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@SpeedLight}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@SpeedLight} % |\k@cgs@full@SpeedLight| is the speed of light in cgs units with full % precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@SpeedLight\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@SpeedLight}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@SpeedLightNumeric} % |\k@SI@short@SpeedLightNumeric| is a mathematical value of % the speed of light in SI units with reduced precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@SpeedLightNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@SpeedLightNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@SpeedLightNumeric} % |\k@SI@full@SpeedLightNumeric| is a mathematical value of % the speed of light in SI units with full precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@SpeedLightNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@SpeedLightNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@SpeedLightNumeric} % |\k@cgs@short@SpeedLightNumeric| is a mathematical value of % the speed of light in cgs units with reduced % precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@SpeedLightNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@SpeedLightNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@SpeedLightNumeric} % |\k@cgs@full@SpeedLightNumeric| is a mathematical value of % the speed of light in cgs units with full precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@SpeedLightNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@SpeedLightNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@AccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@SI@short@AccelGravity| is the accelertion due to gravity at the surface % of the Earth in SI units with reduced precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@AccelGravity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@AccelGravity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@AccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@SI@full@AccelGravity| is the accelertion due to gravity at the surface of % the Earth in SI units with full precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@AccelGravity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@AccelGravity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@AccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@cgs@short@AccelGravity| is the accelertion due to gravity at the surface % of the Earth in cgs units with reduced precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@AccelGravity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@AccelGravity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@AccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@cgs@full@AccelGravity| is the accelertion due to gravity at the surface % of the Earth in cgs units with full precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@AccelGravity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@AccelGravity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@AccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@SI@short@AccelGravityNumeric| is a mathematical value of % the accelertion due to gravity at the surface of the % Earth in SI units with reduced precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@AccelGravityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@AccelGravityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@AccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@SI@full@AccelGravityNumeric| is a mathematical value of % the accelertion due to gravity at the surface of the % Earth in SI units with full precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@AccelGravityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@AccelGravityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@AccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@cgs@short@AccelGravityNumeric| is a mathematical value of % the accelertion due to gravity at the surface of % the Earth in cgs units with reduced precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@AccelGravityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@AccelGravityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@AccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@cgs@full@AccelGravityNumeric| is a mathematical value of % the accelertion due to gravity at the surface of the % Earth in cgs units with full precision. % (CODATA 2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@AccelGravityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@AccelGravityNumeric}\end{mdframed} % \makeatother % % %\subsubsection{Other Constants} % % \DescribeMacro{\k@SI@short@Coulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in % SI units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@Coulomb\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@Coulomb}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@Coulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in % SI units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@Coulomb\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@Coulomb}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@Coulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) % in cgs units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@Coulomb\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@Coulomb}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@Coulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in % cgs units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@Coulomb\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@Coulomb}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@CoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@CoulombNumeric| is a mathematical value of % the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in SI % units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@CoulombNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@CoulombNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@CoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@CoulombNumeric| is a mathematical value of % the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in SI % units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@CoulombNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@CoulombNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@CoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@CoulombNumeric| is a mathematical value of % the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in cgs % units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@CoulombNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@CoulombNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@CoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@CoulombNumeric| is a mathematical value of % the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in cgs % units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@CoulombNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@CoulombNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@VacuumPermittivity} % |\k@SI@short@VacuumPermittivity| is the electric permittivity of the vacuum % in SI units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@VacuumPermittivity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@VacuumPermittivity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@VacuumPermittivity} % |\k@SI@full@VacuumPermittivity| is the electric permittivity of the vacuum in % SI units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@VacuumPermittivity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@VacuumPermittivity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@VacuumPermittivity} % |\k@cgs@short@VacuumPermittivity| is the electric permittivity of the vacuum % in cgs units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@VacuumPermittivity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@VacuumPermittivity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@VacuumPermittivity} % |\k@cgs@full@VacuumPermittivity| is the electric permittivity of the vacuum % in cgs units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@VacuumPermittivity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@VacuumPermittivity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@VacuumPermittivityNumeric} % |\k@SI@short@VacuumPermittivityNumeric| is a mathematical value of % the electric permittivity of the vacuum in SI % units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@VacuumPermittivityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@VacuumPermittivityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@VacuumPermittivityNumeric} % |\k@SI@full@VacuumPermittivityNumeric| is a mathematical value of % the electric permittivity of the vacuum in SI % units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@VacuumPermittivityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@VacuumPermittivityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@VacuumPermittivityNumeric} % |\k@cgs@short@VacuumPermittivityNumeric| is a mathematical value of % the electric permittivity of the vacuum in % cgs units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@VacuumPermittivityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@VacuumPermittivityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@VacuumPermittivityNumeric} % |\k@cgs@full@VacuumPermittivityNumeric| is a mathematical value of % the electric permittivity of the vacuum in cgs % units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@VacuumPermittivityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@VacuumPermittivityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@VacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@short@VacuumPermeability| is the magnetic permeability of the vacuum % in SI units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@VacuumPermeability\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@VacuumPermeability}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@VacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@full@VacuumPermeability| is the magnetic permeability of the vacuum in % SI units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@VacuumPermeability\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@VacuumPermeability}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@VacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@short@VacuumPermeability| is the magnetic permeability of the vacuum % in cgs units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@VacuumPermeability\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@VacuumPermeability}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@VacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@full@VacuumPermeability| is the magnetic permeability of the vacuum % in cgs units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@VacuumPermeability\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@VacuumPermeability}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@VacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@short@VacuumPermeabilityNumeric| is a mathematical value of % the magnetic permeability of the vacuum in SI % units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@VacuumPermeabilityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@VacuumPermeabilityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@VacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@full@VacuumPermeabilityNumeric| is a mathematical value of % the magnetic permeability of the vacuum in SI % units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@VacuumPermeabilityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@VacuumPermeabilityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@VacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@short@VacuumPermeabilityNumeric| is a mathematical value of % the magnetic permeability of the vacuum in % cgs units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@VacuumPermeabilityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@VacuumPermeabilityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@VacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@full@VacuumPermeabilityNumeric| is a mathematical value of % the magnetic permeability of the vacuum in cgs % units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@VacuumPermeabilityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@VacuumPermeabilityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@VacuumImpedance} % |\k@short@VacuumImpedance| is the characteristic impedance of the vacuum with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@VacuumImpedance\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@VacuumImpedance}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@VacuumImpedance} % |\k@full@VacuumImpedance| is the characteristic impedance of the vacuum with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@VacuumImpedance\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@VacuumImpedance}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@VacuumImpedanceNumeric} % |\k@short@VacuumImpedanceNumeric| is a mathematical value of % the characteristic impedance of the vacuum with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@VacuumImpedanceNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@VacuumImpedanceNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@VacuumImpedanceNumeric} % |\k@full@VacuumImpedanceNumeric| is a mathematical value of % the characteristic impedance of the vacuum with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@VacuumImpedanceNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@VacuumImpedanceNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@Boltzmann} % |\k@SI@short@Boltzmann| is the Boltzmann constant in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@Boltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@Boltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@Boltzmann} % |\k@SI@full@Boltzmann| is the Boltzmann constant in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@Boltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@Boltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@Boltzmann} % |\k@cgs@short@Boltzmann| is the Boltzmann constant in cgs units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@Boltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@Boltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@Boltzmann} % |\k@cgs@full@Boltzmann| is the Boltzmann constant in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@Boltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@Boltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@Boltzmann} % |\k@eV@short@Boltzmann| is the Boltzmann constant in eV with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@Boltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@Boltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@Boltzmann} % |\k@eV@full@Boltzmann| is the Boltzmann constant in eV with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@Boltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@Boltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@BoltzmannNumeric} % |\k@SI@short@BoltzmannNumeric| is a mathematical value of % the Boltzmann constant in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@BoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@BoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@BoltzmannNumeric} % |\k@SI@full@BoltzmannNumeric| is a mathematical value of % the Boltzmann constant in SI units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@BoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@BoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@BoltzmannNumeric} % |\k@cgs@short@BoltzmannNumeric| is a mathematical value of % the Boltzmann constant in cgs units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@BoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@BoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@BoltzmannNumeric} % |\k@cgs@full@BoltzmannNumeric| is a mathematical value of % the Boltzmann constant in cgs units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@BoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@BoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@BoltzmannNumeric} % |\k@eV@short@BoltzmannNumeric| is a mathematical value of % the Boltzmann constant in eV with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@BoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@BoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@BoltzmannNumeric} % |\k@eV@full@BoltzmannNumeric| is a mathematical value of % the Boltzmann constant in eV with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@BoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@BoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@Planck| is the Planck constant in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@Planck\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@Planck}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@Planck| is the Planck constant in SI units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@Planck\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@Planck}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@Planck| is the Planck constant in cgs units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@Planck\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@Planck}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@Planck| is the Planck constant in cgs units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@Planck\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@Planck}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@short@Planck| is the Planck constant in eV with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@Planck\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@Planck}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@full@Planck| is the Planck constant in eV with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@Planck\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@Planck}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@PlanckNumeric| is a mathematical value of % the Planck constant in SI units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@PlanckNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@PlanckNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@PlanckNumeric| is a mathematical value of % the Planck constant in SI units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@PlanckNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@PlanckNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@PlanckNumeric| is a mathematical value of % the Planck constant in cgs units with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@PlanckNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@PlanckNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@PlanckNumeric| is a mathematical value of % the Planck constant in cgs units with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@PlanckNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@PlanckNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@short@PlanckNumeric| is a mathematical value of % the Planck constant in eV with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@PlanckNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@PlanckNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@full@PlanckNumeric| is a mathematical value of % the Planck constant in eV with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@PlanckNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@PlanckNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in SI units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@PlanckReduced\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@PlanckReduced}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in SI units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@PlanckReduced\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@PlanckReduced}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in cgs units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@PlanckReduced\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@PlanckReduced}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in cgs units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@PlanckReduced\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@PlanckReduced}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@short@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in eV with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@PlanckReduced\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@PlanckReduced}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@full@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in eV with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@PlanckReduced\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@PlanckReduced}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@PlanckReducedNumeric| is a mathematical value of % the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in SI units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@PlanckReducedNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@PlanckReducedNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@PlanckReducedNumeric| is a mathematical value of % the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in SI units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@PlanckReducedNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@PlanckReducedNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@PlanckReducedNumeric| is a mathematical value of % the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in cgs units with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@PlanckReducedNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@PlanckReducedNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@PlanckReducedNumeric| is a mathematical value of % the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in cgs units with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@PlanckReducedNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@PlanckReducedNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@short@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@short@PlanckReducedNumeric| is a mathematical value of % the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in eV with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@short@PlanckReducedNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@short@PlanckReducedNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@eV@full@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@full@PlanckReducedNumeric| is a mathematical value of % the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in eV with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@eV@full@PlanckReducedNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@eV@full@PlanckReducedNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@Gravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@short@Gravity| is Newton's gravitational constant in SI units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@Gravity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@Gravity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@Gravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@full@Gravity| is Newton's gravitational constant in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@Gravity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@Gravity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@Gravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@short@Gravity| is Newton's gravitational constant in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@Gravity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@Gravity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@Gravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@full@Gravity| is Newton's gravitational constant in cgs units with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@Gravity\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@Gravity}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@GravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@short@GravityNumeric| is a mathematical value of % Newton's gravitational constant in SI units with reduced % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@GravityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@GravityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@GravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@full@GravityNumeric| is a mathematical value of % Newton's gravitational constant in SI units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@GravityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@GravityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@GravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@short@GravityNumeric| is a mathematical value of % Newton's gravitational constant in cgs units with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@GravityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@GravityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@GravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@full@GravityNumeric| is a mathematical value of % Newton's gravitational constant in cgs units with full % precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@GravityNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@GravityNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@StefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@StefanBoltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@StefanBoltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@StefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@StefanBoltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@StefanBoltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@StefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@StefanBoltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@StefanBoltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@StefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@StefanBoltzmann\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@StefanBoltzmann}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@StefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@StefanBoltzmannNumeric| is a mathematical value of % the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@StefanBoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@StefanBoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@StefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@StefanBoltzmannNumeric| is a mathematical value of % the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@StefanBoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@StefanBoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@StefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@StefanBoltzmannNumeric| is a mathematical value of % the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@StefanBoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@StefanBoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@StefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@StefanBoltzmannNumeric| is a mathematical value of % the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@StefanBoltzmannNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@StefanBoltzmannNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@Radiation} % |\k@SI@short@Radiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@Radiation\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@Radiation}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@Radiation} % |\k@SI@full@Radiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@Radiation\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@Radiation}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@Radiation} % |\k@cgs@short@Radiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@Radiation\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@Radiation}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@Radiation} % |\k@cgs@full@Radiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@Radiation\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@Radiation}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@short@RadiationNumeric} % |\k@SI@short@RadiationNumeric| is a mathematical value of % the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@short@RadiationNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@short@RadiationNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@SI@full@RadiationNumeric} % |\k@SI@full@RadiationNumeric| is a mathematical value of % the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@SI@full@RadiationNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@SI@full@RadiationNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@short@RadiationNumeric} % |\k@cgs@short@RadiationNumeric| is a mathematical value of % the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@short@RadiationNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@short@RadiationNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@cgs@full@RadiationNumeric} % |\k@cgs@full@RadiationNumeric| is a mathematical value of % the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with full % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@cgs@full@RadiationNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@cgs@full@RadiationNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@FineStructure} % |\k@short@FineStructure| is the fine structure constant with reduced % precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@FineStructure\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@FineStructure}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@FineStructure} % |\k@full@FineStructure| is the fine structure constant with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@FineStructure\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@FineStructure}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@FineStructureNumeric} % |\k@short@FineStructureNumeric| is a mathematical value of % the fine structure constant with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@FineStructureNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@FineStructureNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@FineStructureNumeric} % |\k@full@FineStructureNumeric| is a mathematical value of % the fine structure constant with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@FineStructureNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@FineStructureNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@FineStructureReciprocal} % |\k@short@FineStructureReciprocal| is the reciprocal of the fine structure % constant with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@FineStructureReciprocal\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@FineStructureReciprocal}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@FineStructureReciprocal} % |\k@full@FineStructureReciprocal| is the reciprocal of the fine structure % constant with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@FineStructureReciprocal\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@FineStructureReciprocal}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@FineStructureReciprocalNumeric} % |\k@short@FineStructureReciprocalNumeric| is a mathematical value of % the reciprocal of the fine structure % constant with reduced precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@FineStructureReciprocalNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@FineStructureReciprocalNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@FineStructureReciprocalNumeric} % |\k@full@FineStructureReciprocalNumeric| is a mathematical value of % the reciprocal of the fine structure constant % with full precision. % (Calculated) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@FineStructureReciprocalNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@FineStructureReciprocalNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@Avogadro} % |\k@short@Avogadro| is Avogadro's Number (the number of particles in a mole) % with reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@Avogadro\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@Avogadro}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@Avogadro} % |\k@full@Avogadro| is Avogadro's Number (the number of particles in a mole) % with full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@Avogadro\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@Avogadro}\end{mdframed} % \makeatother % % \DescribeMacro{\k@short@AvogadroNumeric} % |\k@short@AvogadroNumeric| is a mathematical value of % Avogadro's Number (the number of particles in a mole) with % reduced precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@short@AvogadroNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@short@AvogadroNumeric}\end{mdframed} % \makeatother % % \DescribeMacro{\k@full@AvogadroNumeric} % |\k@full@AvogadroNumeric| is a mathematical value of % Avogadro's Number (the number of particles in a mole) with % full precision. % (CODATA~2018) % % The macro can be invoked by (e.g.) % \begin{mdframed}[backgroundcolor=orange!25]% % {\small\texttt{\textbackslash makeatletter\\ The value is % \textbackslash k@full@AvogadroNumeric\\ % \textbackslash makeatother}}\end{mdframed} % \makeatletter % Resulting in % \begin{mdframed}[backgroundcolor=blue!25]% % {The value is \k@full@AvogadroNumeric}\end{mdframed} % \makeatother % \makeatletter % \StopEventually{} % % \section{Implementation} % % \subsection{Special} % %\iffalse %<*package> %\fi % \begin{macro}{\physconst@decimalsseparator} % |\physconst@decimalsseparator| is the a special macro used to separate digits % in the decimal portion of the constants. If the option unseparatedecimals is % not specified, decimals will be printed as 1.234\,567\,890. If the option % is specified, decimals will be printed as 1.234567890. This macro should % note be used outside of this package. % % \begin{macrocode} \ifx\unseparatedecimals\undefined \DeclareRobustCommand{\physconst@decimalsseparator}{\,} \else \DeclareRobustCommand{\physconst@decimalsseparator}{ } \fi % \end{macrocode} % \end{macro} %\iffalse % %\fi % %\subsection{Mass} % %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassElectron| is the mass of an electron in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassElectron}{% \ensuremath{% 9.11% \times 10^{-31}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassElectron| is the mass of an electron in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassElectron}{% \ensuremath{% 9.109\expandafter\physconst@decimalsseparator% 383\expandafter\physconst@decimalsseparator% 701\expandafter\physconst@decimalsseparator% 500% \times 10^{-31}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassElectron| is the mass of an electron in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassElectron}{% \ensuremath{% 9.11% \times 10^{-28}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassElectron| is the mass of an electron in cgs units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassElectron}{% \ensuremath{% 9.109\expandafter\physconst@decimalsseparator% 383\expandafter\physconst@decimalsseparator% 701\expandafter\physconst@decimalsseparator% 500% \times 10^{-28}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassElectron| is the mass of an electron in eV with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@MassElectron}{% \ensuremath{% 5.11% \times 10^{5}\eV\,c^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@MassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassElectron| is the mass of an electron in eV with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@MassElectron}{% \ensuremath{% 5.109\expandafter\physconst@decimalsseparator% 989\expandafter\physconst@decimalsseparator% 499\expandafter\physconst@decimalsseparator% 962% \times 10^{5}\eV\,c^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\kMassElectron| is the mass of an electron. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassElectron}{% \k@SI@full@MassElectron} \else \DeclareRobustCommand {\kMassElectron}{% \k@SI@short@MassElectron} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassElectron}{% \k@cgs@full@MassElectron} \else \DeclareRobustCommand {\kMassElectron}{% \k@cgs@short@MassElectron} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVMassElectron} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\keVMassElectron| is the mass of an electron. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVMassElectron}{% \k@eV@full@MassElectron} \else \DeclareRobustCommand {\keVMassElectron}{% \k@eV@short@MassElectron} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassElectronNumeric| is the mass of an electron in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassElectronNumeric}{% \ensuremath{% 9.11e-31}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassElectronNumeric| is the mass of an electron in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassElectronNumeric}{% \ensuremath{% 9.109383701500e-31}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassElectronNumeric| is the mass of an electron in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassElectronNumeric}{% \ensuremath{% 9.11e-28}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassElectronNumeric| is the mass of an electron in cgs units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassElectronNumeric}{% \ensuremath{% 9.109383701500e-28}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassElectronNumeric| is the mass of an electron in eV with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@MassElectronNumeric}{% \ensuremath{% 5.11e+05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@MassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassElectronNumeric| is the mass of an electron in eV with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@MassElectronNumeric}{% \ensuremath{% 5.109989499962e+05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\kMassElectronNumeric| is the mass of an electron. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassElectronNumeric}{% \k@SI@full@MassElectronNumeric} \else \DeclareRobustCommand {\kMassElectronNumeric}{% \k@SI@short@MassElectronNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassElectronNumeric}{% \k@cgs@full@MassElectronNumeric} \else \DeclareRobustCommand {\kMassElectronNumeric}{% \k@cgs@short@MassElectronNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVMassElectronNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\keVMassElectronNumeric| is the mass of an electron. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVMassElectronNumeric}{% \k@eV@full@MassElectronNumeric} \else \DeclareRobustCommand {\keVMassElectronNumeric}{% \k@eV@short@MassElectronNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassProton| is the mass of a proton in SI units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassProton}{% \ensuremath{% 1.67% \times 10^{-27}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassProton| is the mass of a proton in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassProton}{% \ensuremath{% 1.672\expandafter\physconst@decimalsseparator% 621\expandafter\physconst@decimalsseparator% 923\expandafter\physconst@decimalsseparator% 690% \times 10^{-27}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassProton| is the mass of a proton in cgs units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassProton}{% \ensuremath{% 1.67% \times 10^{-24}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassProton| is the mass of a proton in cgs units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassProton}{% \ensuremath{% 1.672\expandafter\physconst@decimalsseparator% 621\expandafter\physconst@decimalsseparator% 923\expandafter\physconst@decimalsseparator% 690% \times 10^{-24}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassProton| is the mass of a proton in eV with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@MassProton}{% \ensuremath{% 9.38% \times 10^{8}\eV\,c^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@MassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassProton| is the mass of a proton in eV with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@MassProton}{% \ensuremath{% 9.382\expandafter\physconst@decimalsseparator% 720\expandafter\physconst@decimalsseparator% 881\expandafter\physconst@decimalsseparator% 605% \times 10^{8}\eV\,c^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\kMassProton| is the mass of a proton. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassProton}{% \k@SI@full@MassProton} \else \DeclareRobustCommand {\kMassProton}{% \k@SI@short@MassProton} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassProton}{% \k@cgs@full@MassProton} \else \DeclareRobustCommand {\kMassProton}{% \k@cgs@short@MassProton} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVMassProton} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\keVMassProton| is the mass of a proton. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVMassProton}{% \k@eV@full@MassProton} \else \DeclareRobustCommand {\keVMassProton}{% \k@eV@short@MassProton} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassProtonNumeric| is the mass of a proton in SI units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassProtonNumeric}{% \ensuremath{% 1.67e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassProtonNumeric| is the mass of a proton in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassProtonNumeric}{% \ensuremath{% 1.672621923690e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassProtonNumeric| is the mass of a proton in cgs units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassProtonNumeric}{% \ensuremath{% 1.67e-24}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassProtonNumeric| is the mass of a proton in cgs units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassProtonNumeric}{% \ensuremath{% 1.672621923690e-24}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassProtonNumeric| is the mass of a proton in eV with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@MassProtonNumeric}{% \ensuremath{% 9.38e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@MassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassProtonNumeric| is the mass of a proton in eV with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@MassProtonNumeric}{% \ensuremath{% 9.382720881605e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\kMassProtonNumeric| is the mass of a proton. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassProtonNumeric}{% \k@SI@full@MassProtonNumeric} \else \DeclareRobustCommand {\kMassProtonNumeric}{% \k@SI@short@MassProtonNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassProtonNumeric}{% \k@cgs@full@MassProtonNumeric} \else \DeclareRobustCommand {\kMassProtonNumeric}{% \k@cgs@short@MassProtonNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVMassProtonNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\keVMassProtonNumeric| is the mass of a proton. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVMassProtonNumeric}{% \k@eV@full@MassProtonNumeric} \else \DeclareRobustCommand {\keVMassProtonNumeric}{% \k@eV@short@MassProtonNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassHydrogen| is the mass of a neutral hydrogen atom in SI units % with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassHydrogen}{% \ensuremath{% 1.67% \times 10^{-27}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassHydrogen| is the mass of a neutral hydrogen atom in SI units % with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassHydrogen}{% \ensuremath{% 1.673\expandafter\physconst@decimalsseparator% 532\expandafter\physconst@decimalsseparator% 837\expandafter\physconst@decimalsseparator% 806% \times 10^{-27}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassHydrogen| is the mass of a neutral hydrogen atom in cgs % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassHydrogen}{% \ensuremath{% 1.67% \times 10^{-24}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassHydrogen| is the mass of a neutral hydrogen atom in cgs % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassHydrogen}{% \ensuremath{% 1.673\expandafter\physconst@decimalsseparator% 532\expandafter\physconst@decimalsseparator% 837\expandafter\physconst@decimalsseparator% 806% \times 10^{-24}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassHydrogen| is the mass of a neutral hydrogen atom in eV with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@MassHydrogen}{% \ensuremath{% 9.39% \times 10^{8}\eV\,c^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@MassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassHydrogen| is the mass of a neutral hydrogen atom in eV with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@MassHydrogen}{% \ensuremath{% 9.387\expandafter\physconst@decimalsseparator% 830\expandafter\physconst@decimalsseparator% 735\expandafter\physconst@decimalsseparator% 048% \times 10^{8}\eV\,c^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\kMassHydrogen| is the mass of a neutral hydrogen atom. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassHydrogen}{% \k@SI@full@MassHydrogen} \else \DeclareRobustCommand {\kMassHydrogen}{% \k@SI@short@MassHydrogen} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassHydrogen}{% \k@cgs@full@MassHydrogen} \else \DeclareRobustCommand {\kMassHydrogen}{% \k@cgs@short@MassHydrogen} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVMassHydrogen} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\keVMassHydrogen| is the mass of a neutral hydrogen atom. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVMassHydrogen}{% \k@eV@full@MassHydrogen} \else \DeclareRobustCommand {\keVMassHydrogen}{% \k@eV@short@MassHydrogen} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in SI units % with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassHydrogenNumeric}{% \ensuremath{% 1.67e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in SI units % with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassHydrogenNumeric}{% \ensuremath{% 1.673532837806e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in cgs % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassHydrogenNumeric}{% \ensuremath{% 1.67e-24}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in cgs % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassHydrogenNumeric}{% \ensuremath{% 1.673532837806e-24}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in eV with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@MassHydrogenNumeric}{% \ensuremath{% 9.39e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@MassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassHydrogenNumeric| is the mass of a neutral hydrogen atom in eV with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@MassHydrogenNumeric}{% \ensuremath{% 9.387830735048e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\kMassHydrogenNumeric| is the mass of a neutral hydrogen atom. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassHydrogenNumeric}{% \k@SI@full@MassHydrogenNumeric} \else \DeclareRobustCommand {\kMassHydrogenNumeric}{% \k@SI@short@MassHydrogenNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassHydrogenNumeric}{% \k@cgs@full@MassHydrogenNumeric} \else \DeclareRobustCommand {\kMassHydrogenNumeric}{% \k@cgs@short@MassHydrogenNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVMassHydrogenNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\keVMassHydrogenNumeric| is the mass of a neutral hydrogen atom. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVMassHydrogenNumeric}{% \k@eV@full@MassHydrogenNumeric} \else \DeclareRobustCommand {\keVMassHydrogenNumeric}{% \k@eV@short@MassHydrogenNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassSun} % |\k@SI@short@MassSun| is the mass of the Sun in SI units with reduced % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassSun}{% \ensuremath{% 1.99% \times 10^{30}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassSun} % |\k@SI@full@MassSun| is the mass of the Sun in SI units with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassSun}{% \ensuremath{% 1.988\expandafter\physconst@decimalsseparator% 409\expandafter\physconst@decimalsseparator% 9% \times 10^{30}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassSun} % |\k@cgs@short@MassSun| is the mass of the Sun in cgs units with reduced % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassSun}{% \ensuremath{% 1.99% \times 10^{33}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassSun} % |\k@cgs@full@MassSun| is the mass of the Sun in cgs units with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassSun}{% \ensuremath{% 1.988\expandafter\physconst@decimalsseparator% 409\expandafter\physconst@decimalsseparator% 9% \times 10^{33}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassSun} % |\kMassSun| is the mass of the Sun. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassSun}{% \k@SI@full@MassSun} \else \DeclareRobustCommand {\kMassSun}{% \k@SI@short@MassSun} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassSun}{% \k@cgs@full@MassSun} \else \DeclareRobustCommand {\kMassSun}{% \k@cgs@short@MassSun} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassSunNumeric} % |\k@SI@short@MassSunNumeric| is the mass of the Sun in SI units with reduced % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassSunNumeric}{% \ensuremath{% 1.99e+30}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassSunNumeric} % |\k@SI@full@MassSunNumeric| is the mass of the Sun in SI units with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassSunNumeric}{% \ensuremath{% 1.9884099e+30}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassSunNumeric} % |\k@cgs@short@MassSunNumeric| is the mass of the Sun in cgs units with reduced % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassSunNumeric}{% \ensuremath{% 1.99e+33}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassSunNumeric} % |\k@cgs@full@MassSunNumeric| is the mass of the Sun in cgs units with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassSunNumeric}{% \ensuremath{% 1.9884099e+33}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassSunNumeric} % |\kMassSunNumeric| is the mass of the Sun. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassSunNumeric}{% \k@SI@full@MassSunNumeric} \else \DeclareRobustCommand {\kMassSunNumeric}{% \k@SI@short@MassSunNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassSunNumeric}{% \k@cgs@full@MassSunNumeric} \else \DeclareRobustCommand {\kMassSunNumeric}{% \k@cgs@short@MassSunNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@MassEarth} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\k@short@MassEarth| is the mass of the Earth with reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@short@MassEarth}{% \ensuremath{% 5.97% \times 10^{24}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@MassEarth} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\k@full@MassEarth| is the mass of the Earth with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@full@MassEarth}{% \ensuremath{% 5.972\expandafter\physconst@decimalsseparator% 168% \times 10^{24}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassEarth} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\kMassEarth| is the mass of the Earth. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kMassEarth}{% \k@full@MassEarth} \else \DeclareRobustCommand {\kMassEarth}{% \k@short@MassEarth} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@MassEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\k@short@MassEarthNumeric| is the mass of the Earth with reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@short@MassEarthNumeric}{% \ensuremath{% 5.97e+24}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@MassEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\k@full@MassEarthNumeric| is the mass of the Earth with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@full@MassEarthNumeric}{% \ensuremath{% 5.972168e+24}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Earth} % |\kMassEarthNumeric| is the mass of the Earth. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kMassEarthNumeric}{% \k@full@MassEarthNumeric} \else \DeclareRobustCommand {\kMassEarthNumeric}{% \k@short@MassEarthNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@MassJupiter} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\k@short@MassJupiter| is the mass of Jupiter with reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@short@MassJupiter}{% \ensuremath{% 1.90% \times 10^{27}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@MassJupiter} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\k@full@MassJupiter| is the mass of Jupiter with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@full@MassJupiter}{% \ensuremath{% 1.898\expandafter\physconst@decimalsseparator% 124\expandafter\physconst@decimalsseparator% 6% \times 10^{27}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassJupiter} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\kMassJupiter| is the mass of Jupiter. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kMassJupiter}{% \k@full@MassJupiter} \else \DeclareRobustCommand {\kMassJupiter}{% \k@short@MassJupiter} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@MassJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\k@short@MassJupiterNumeric| is the mass of Jupiter with reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@short@MassJupiterNumeric}{% \ensuremath{% 1.90e+27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@MassJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\k@full@MassJupiterNumeric| is the mass of Jupiter with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@full@MassJupiterNumeric}{% \ensuremath{% 1.8981246e+27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add mass of Jupiter} % |\kMassJupiterNumeric| is the mass of Jupiter. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kMassJupiterNumeric}{% \k@full@MassJupiterNumeric} \else \DeclareRobustCommand {\kMassJupiterNumeric}{% \k@short@MassJupiterNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassAMU| is the mass of an atomic mass unit in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassAMU}{% \ensuremath{% 1.66% \times 10^{-27}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassAMU| is the mass of an atomic mass unit in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassAMU}{% \ensuremath{% 1.660\expandafter\physconst@decimalsseparator% 539\expandafter\physconst@decimalsseparator% 066\expandafter\physconst@decimalsseparator% 600% \times 10^{-27}\kg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassAMU| is the mass of an atomic mass unit in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassAMU}{% \ensuremath{% 1.66% \times 10^{-24}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassAMU| is the mass of an atomic mass unit in cgs units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassAMU}{% \ensuremath{% 1.660\expandafter\physconst@decimalsseparator% 539\expandafter\physconst@decimalsseparator% 066\expandafter\physconst@decimalsseparator% 600% \times 10^{-24}\gm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassAMU| is the mass of an atomic mass unit in eV with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@MassAMU}{% \ensuremath{% 9.31% \times 10^{8}\eV\,c^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@MassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassAMU| is the mass of an atomic mass unit in eV with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@MassAMU}{% \ensuremath{% 9.314\expandafter\physconst@decimalsseparator% 941\expandafter\physconst@decimalsseparator% 024\expandafter\physconst@decimalsseparator% 171% \times 10^{8}\eV\,c^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\kMassAMU| is the mass of an atomic mass unit. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassAMU}{% \k@SI@full@MassAMU} \else \DeclareRobustCommand {\kMassAMU}{% \k@SI@short@MassAMU} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassAMU}{% \k@cgs@full@MassAMU} \else \DeclareRobustCommand {\kMassAMU}{% \k@cgs@short@MassAMU} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVMassAMU} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\keVMassAMU| is the mass of an atomic mass unit. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVMassAMU}{% \k@eV@full@MassAMU} \else \DeclareRobustCommand {\keVMassAMU}{% \k@eV@short@MassAMU} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@short@MassAMUNumeric| is the mass of an atomic mass unit in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@MassAMUNumeric}{% \ensuremath{% 1.66e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@SI@full@MassAMUNumeric| is the mass of an atomic mass unit in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@MassAMUNumeric}{% \ensuremath{% 1.660539066600e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@short@MassAMUNumeric| is the mass of an atomic mass unit in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@MassAMUNumeric}{% \ensuremath{% 1.66e-24}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@cgs@full@MassAMUNumeric| is the mass of an atomic mass unit in cgs units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@MassAMUNumeric}{% \ensuremath{% 1.660539066600e-24}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@short@MassAMUNumeric| is the mass of an atomic mass unit in eV with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@MassAMUNumeric}{% \ensuremath{% 9.31e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@MassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\k@eV@full@MassAMUNumeric| is the mass of an atomic mass unit in eV with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@MassAMUNumeric}{% \ensuremath{% 9.314941024171e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kMassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\kMassAMUNumeric| is the mass of an atomic mass unit. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kMassAMUNumeric}{% \k@SI@full@MassAMUNumeric} \else \DeclareRobustCommand {\kMassAMUNumeric}{% \k@SI@short@MassAMUNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kMassAMUNumeric}{% \k@cgs@full@MassAMUNumeric} \else \DeclareRobustCommand {\kMassAMUNumeric}{% \k@cgs@short@MassAMUNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVMassAMUNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % \changes{v1.1.0}{2020/02/03}{Correct value in eV.} % |\keVMassAMUNumeric| is the mass of an atomic mass unit. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVMassAMUNumeric}{% \k@eV@full@MassAMUNumeric} \else \DeclareRobustCommand {\keVMassAMUNumeric}{% \k@eV@short@MassAMUNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi % %\subsection{Charge} % %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@ChargeFundamental} % |\k@SI@short@ChargeFundamental| is the fundamental charge in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@ChargeFundamental}{% \ensuremath{% 1.60% \times 10^{-19}\Coulomb}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@ChargeFundamental} % |\k@SI@full@ChargeFundamental| is the fundamental charge in SI units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@ChargeFundamental}{% \ensuremath{% 1.602\expandafter\physconst@decimalsseparator% 176\expandafter\physconst@decimalsseparator% 634% \times 10^{-19}\Coulomb}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@ChargeFundamental} % |\k@cgs@short@ChargeFundamental| is the fundamental charge in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@ChargeFundamental}{% \ensuremath{% 4.80% \times 10^{-10}\esu}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@ChargeFundamental} % |\k@cgs@full@ChargeFundamental| is the fundamental charge in cgs units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@ChargeFundamental}{% \ensuremath{% 4.803\expandafter\physconst@decimalsseparator% 204\expandafter\physconst@decimalsseparator% 713% \times 10^{-10}\esu}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kChargeFundamental} % |\kChargeFundamental| is the fundamental charge. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeFundamental}{% \k@SI@full@ChargeFundamental} \else \DeclareRobustCommand {\kChargeFundamental}{% \k@SI@short@ChargeFundamental} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeFundamental}{% \k@cgs@full@ChargeFundamental} \else \DeclareRobustCommand {\kChargeFundamental}{% \k@cgs@short@ChargeFundamental} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@ChargeFundamentalNumeric} % |\k@SI@short@ChargeFundamentalNumeric| is the fundamental charge in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@ChargeFundamentalNumeric}{% \ensuremath{% 1.60e-19}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@ChargeFundamentalNumeric} % |\k@SI@full@ChargeFundamentalNumeric| is the fundamental charge in SI units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@ChargeFundamentalNumeric}{% \ensuremath{% 1.602176634e-19}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@ChargeFundamentalNumeric} % |\k@cgs@short@ChargeFundamentalNumeric| is the fundamental charge in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@ChargeFundamentalNumeric}{% \ensuremath{% 4.80e-10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@ChargeFundamentalNumeric} % |\k@cgs@full@ChargeFundamentalNumeric| is the fundamental charge in cgs units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@ChargeFundamentalNumeric}{% \ensuremath{% 4.803204713e-10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kChargeFundamentalNumeric} % |\kChargeFundamentalNumeric| is the fundamental charge. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeFundamentalNumeric}{% \k@SI@full@ChargeFundamentalNumeric} \else \DeclareRobustCommand {\kChargeFundamentalNumeric}{% \k@SI@short@ChargeFundamentalNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeFundamentalNumeric}{% \k@cgs@full@ChargeFundamentalNumeric} \else \DeclareRobustCommand {\kChargeFundamentalNumeric}{% \k@cgs@short@ChargeFundamentalNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@ChargeElectron} % |\k@SI@short@ChargeElectron| is the charge of an electron in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@ChargeElectron}{% \ensuremath{% -1.60% \times 10^{-19}\Coulomb}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@ChargeElectron} % |\k@SI@full@ChargeElectron| is the charge of an electron in SI units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@ChargeElectron}{% \ensuremath{% -1.602\expandafter\physconst@decimalsseparator% 176\expandafter\physconst@decimalsseparator% 634% \times 10^{-19}\Coulomb}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@ChargeElectron} % |\k@cgs@short@ChargeElectron| is the charge of an electron in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@ChargeElectron}{% \ensuremath{% -4.80% \times 10^{-10}\esu}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@ChargeElectron} % |\k@cgs@full@ChargeElectron| is the charge of an electron in cgs units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@ChargeElectron}{% \ensuremath{% -4.803\expandafter\physconst@decimalsseparator% 204\expandafter\physconst@decimalsseparator% 713% \times 10^{-10}\esu}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kChargeElectron} % |\kChargeElectron| is the charge of an electron. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeElectron}{% \k@SI@full@ChargeElectron} \else \DeclareRobustCommand {\kChargeElectron}{% \k@SI@short@ChargeElectron} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeElectron}{% \k@cgs@full@ChargeElectron} \else \DeclareRobustCommand {\kChargeElectron}{% \k@cgs@short@ChargeElectron} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@ChargeElectronNumeric} % |\k@SI@short@ChargeElectronNumeric| is the charge of an electron in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@ChargeElectronNumeric}{% \ensuremath{% -1.60e-19}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@ChargeElectronNumeric} % |\k@SI@full@ChargeElectronNumeric| is the charge of an electron in SI units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@ChargeElectronNumeric}{% \ensuremath{% -1.602176634e-19}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@ChargeElectronNumeric} % |\k@cgs@short@ChargeElectronNumeric| is the charge of an electron in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@ChargeElectronNumeric}{% \ensuremath{% -4.80e-10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@ChargeElectronNumeric} % |\k@cgs@full@ChargeElectronNumeric| is the charge of an electron in cgs units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@ChargeElectronNumeric}{% \ensuremath{% -4.803204713e-10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kChargeElectronNumeric} % |\kChargeElectronNumeric| is the charge of an electron. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeElectronNumeric}{% \k@SI@full@ChargeElectronNumeric} \else \DeclareRobustCommand {\kChargeElectronNumeric}{% \k@SI@short@ChargeElectronNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeElectronNumeric}{% \k@cgs@full@ChargeElectronNumeric} \else \DeclareRobustCommand {\kChargeElectronNumeric}{% \k@cgs@short@ChargeElectronNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@ChargeProton} % |\k@SI@short@ChargeProton| is the charge of a proton in SI units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@ChargeProton}{% \ensuremath{% 1.60% \times 10^{-19}\Coulomb}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@ChargeProton} % |\k@SI@full@ChargeProton| is the charge of a proton in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@ChargeProton}{% \ensuremath{% 1.602\expandafter\physconst@decimalsseparator% 176\expandafter\physconst@decimalsseparator% 634% \times 10^{-19}\Coulomb}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@ChargeProton} % |\k@cgs@short@ChargeProton| is the charge of a proton in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@ChargeProton}{% \ensuremath{% 4.80% \times 10^{-10}\esu}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@ChargeProton} % |\k@cgs@full@ChargeProton| is the charge of a proton in cgs units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@ChargeProton}{% \ensuremath{% 4.803\expandafter\physconst@decimalsseparator% 204\expandafter\physconst@decimalsseparator% 713% \times 10^{-10}\esu}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kChargeProton} % |\kChargeProton| is the charge of a proton. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeProton}{% \k@SI@full@ChargeProton} \else \DeclareRobustCommand {\kChargeProton}{% \k@SI@short@ChargeProton} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeProton}{% \k@cgs@full@ChargeProton} \else \DeclareRobustCommand {\kChargeProton}{% \k@cgs@short@ChargeProton} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@ChargeProtonNumeric} % |\k@SI@short@ChargeProtonNumeric| is the charge of a proton in SI units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@ChargeProtonNumeric}{% \ensuremath{% 1.60e-19}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@ChargeProtonNumeric} % |\k@SI@full@ChargeProtonNumeric| is the charge of a proton in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@ChargeProtonNumeric}{% \ensuremath{% 1.602176634e-19}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@ChargeProtonNumeric} % |\k@cgs@short@ChargeProtonNumeric| is the charge of a proton in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@ChargeProtonNumeric}{% \ensuremath{% 4.80e-10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@ChargeProtonNumeric} % |\k@cgs@full@ChargeProtonNumeric| is the charge of a proton in cgs units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@ChargeProtonNumeric}{% \ensuremath{% 4.803204713e-10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kChargeProtonNumeric} % |\kChargeProtonNumeric| is the charge of a proton. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeProtonNumeric}{% \k@SI@full@ChargeProtonNumeric} \else \DeclareRobustCommand {\kChargeProtonNumeric}{% \k@SI@short@ChargeProtonNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kChargeProtonNumeric}{% \k@cgs@full@ChargeProtonNumeric} \else \DeclareRobustCommand {\kChargeProtonNumeric}{% \k@cgs@short@ChargeProtonNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi % %\subsection{Distances and Lengths} % %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@RadiusBohr} % |\k@SI@short@RadiusBohr| is Bohr radius of an atom in SI units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@RadiusBohr}{% \ensuremath{% 5.29% \times 10^{-11}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@RadiusBohr} % |\k@SI@full@RadiusBohr| is Bohr radius of an atom in SI units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@RadiusBohr}{% \ensuremath{% 5.291\expandafter\physconst@decimalsseparator% 772\expandafter\physconst@decimalsseparator% 11% \times 10^{-11}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@RadiusBohr} % |\k@cgs@short@RadiusBohr| is Bohr radius of an atom in cgs units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@RadiusBohr}{% \ensuremath{% 5.29% \times 10^{-9}\cm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@RadiusBohr} % |\k@cgs@full@RadiusBohr| is Bohr radius of an atom in cgs units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@RadiusBohr}{% \ensuremath{% 5.291\expandafter\physconst@decimalsseparator% 772\expandafter\physconst@decimalsseparator% 11% \times 10^{-9}\cm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiusBohr} % |\kRadiusBohr| is Bohr radius of an atom. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusBohr}{% \k@SI@full@RadiusBohr} \else \DeclareRobustCommand {\kRadiusBohr}{% \k@SI@short@RadiusBohr} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusBohr}{% \k@cgs@full@RadiusBohr} \else \DeclareRobustCommand {\kRadiusBohr}{% \k@cgs@short@RadiusBohr} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@RadiusBohrNumeric} % |\k@SI@short@RadiusBohrNumeric| is Bohr radius of an atom in SI units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@RadiusBohrNumeric}{% \ensuremath{% 5.29e-11}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@RadiusBohrNumeric} % |\k@SI@full@RadiusBohrNumeric| is Bohr radius of an atom in SI units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@RadiusBohrNumeric}{% \ensuremath{% 5.29177211e-11}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@RadiusBohrNumeric} % |\k@cgs@short@RadiusBohrNumeric| is Bohr radius of an atom in cgs units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@RadiusBohrNumeric}{% \ensuremath{% 5.29e-09}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@RadiusBohrNumeric} % |\k@cgs@full@RadiusBohrNumeric| is Bohr radius of an atom in cgs units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@RadiusBohrNumeric}{% \ensuremath{% 5.29177211e-09}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiusBohrNumeric} % |\kRadiusBohrNumeric| is Bohr radius of an atom. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusBohrNumeric}{% \k@SI@full@RadiusBohrNumeric} \else \DeclareRobustCommand {\kRadiusBohrNumeric}{% \k@SI@short@RadiusBohrNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusBohrNumeric}{% \k@cgs@full@RadiusBohrNumeric} \else \DeclareRobustCommand {\kRadiusBohrNumeric}{% \k@cgs@short@RadiusBohrNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@AstronomicalUnit} % |\k@SI@short@AstronomicalUnit| is the astronomical unit (the average distance % between the Earth and the Sun) in SI units with reduced precision. % Source: IAU~Resolution~B2~2012 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@AstronomicalUnit}{% \ensuremath{% 1.50% \times 10^{11}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@AstronomicalUnit} % |\k@SI@full@AstronomicalUnit| is the astronomical unit (the average distance % between the Earth and the Sun) in SI units with full precision. % Source: IAU~Resolution~B2~2012 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@AstronomicalUnit}{% \ensuremath{% 1.495\expandafter\physconst@decimalsseparator% 978\expandafter\physconst@decimalsseparator% 707% \times 10^{11}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@AstronomicalUnit} % |\k@cgs@short@AstronomicalUnit| is the astronomical unit (the average % distance between the Earth and the Sun) in cgs units with reduced precision. % Source: IAU~Resolution~B2~2012 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@AstronomicalUnit}{% \ensuremath{% 1.50% \times 10^{13}\cm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@AstronomicalUnit} % |\k@cgs@full@AstronomicalUnit| is the astronomical unit (the average distance % between the Earth and the Sun) in cgs units with full precision. % Source: IAU~Resolution~B2~2012 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@AstronomicalUnit}{% \ensuremath{% 1.495\expandafter\physconst@decimalsseparator% 978\expandafter\physconst@decimalsseparator% 707% \times 10^{13}\cm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kAstronomicalUnit} % |\kAstronomicalUnit| is the astronomical unit (the average distance between % the Earth and the Sun). % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kAstronomicalUnit}{% \k@SI@full@AstronomicalUnit} \else \DeclareRobustCommand {\kAstronomicalUnit}{% \k@SI@short@AstronomicalUnit} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kAstronomicalUnit}{% \k@cgs@full@AstronomicalUnit} \else \DeclareRobustCommand {\kAstronomicalUnit}{% \k@cgs@short@AstronomicalUnit} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@AstronomicalUnitNumeric} % |\k@SI@short@AstronomicalUnitNumeric| is the astronomical unit (the average distance % between the Earth and the Sun) in SI units with reduced precision. % Source: IAU~Resolution~B2~2012 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@AstronomicalUnitNumeric}{% \ensuremath{% 1.50e+11}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@AstronomicalUnitNumeric} % |\k@SI@full@AstronomicalUnitNumeric| is the astronomical unit (the average distance % between the Earth and the Sun) in SI units with full precision. % Source: IAU~Resolution~B2~2012 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@AstronomicalUnitNumeric}{% \ensuremath{% 1.495978707e+11}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@AstronomicalUnitNumeric} % |\k@cgs@short@AstronomicalUnitNumeric| is the astronomical unit (the average % distance between the Earth and the Sun) in cgs units with reduced precision. % Source: IAU~Resolution~B2~2012 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@AstronomicalUnitNumeric}{% \ensuremath{% 1.50e+13}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@AstronomicalUnitNumeric} % |\k@cgs@full@AstronomicalUnitNumeric| is the astronomical unit (the average distance % between the Earth and the Sun) in cgs units with full precision. % Source: IAU~Resolution~B2~2012 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@AstronomicalUnitNumeric}{% \ensuremath{% 1.495978707e+13}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kAstronomicalUnitNumeric} % |\kAstronomicalUnitNumeric| is the astronomical unit (the average distance between % the Earth and the Sun). % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kAstronomicalUnitNumeric}{% \k@SI@full@AstronomicalUnitNumeric} \else \DeclareRobustCommand {\kAstronomicalUnitNumeric}{% \k@SI@short@AstronomicalUnitNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kAstronomicalUnitNumeric}{% \k@cgs@full@AstronomicalUnitNumeric} \else \DeclareRobustCommand {\kAstronomicalUnitNumeric}{% \k@cgs@short@AstronomicalUnitNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@Parsec} % |\k@SI@short@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in % SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@Parsec}{% \ensuremath{% 3.09% \times 10^{16}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@Parsec} % |\k@SI@full@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in SI % units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@Parsec}{% \ensuremath{% 3.085\expandafter\physconst@decimalsseparator% 677\expandafter\physconst@decimalsseparator% 581% \times 10^{16}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@Parsec} % |\k@cgs@short@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in % cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@Parsec}{% \ensuremath{% 3.09% \times 10^{18}\cm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@Parsec} % |\k@cgs@full@Parsec| is the length of a parsec ($\frac{648000\au}{\pi}$) in % cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@Parsec}{% \ensuremath{% 3.085\expandafter\physconst@decimalsseparator% 677\expandafter\physconst@decimalsseparator% 581% \times 10^{18}\cm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kParsec} % |\kParsec| is the length of a parsec ($\frac{648000\au}{\pi}$). % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kParsec}{% \k@SI@full@Parsec} \else \DeclareRobustCommand {\kParsec}{% \k@SI@short@Parsec} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kParsec}{% \k@cgs@full@Parsec} \else \DeclareRobustCommand {\kParsec}{% \k@cgs@short@Parsec} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@ParsecNumeric} % |\k@SI@short@ParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$) in % SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@ParsecNumeric}{% \ensuremath{% 3.09e+16}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@ParsecNumeric} % |\k@SI@full@ParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$) in SI % units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@ParsecNumeric}{% \ensuremath{% 3.085677581e+16}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@ParsecNumeric} % |\k@cgs@short@ParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$) in % cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@ParsecNumeric}{% \ensuremath{% 3.09e+18}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@ParsecNumeric} % |\k@cgs@full@ParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$) in % cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@ParsecNumeric}{% \ensuremath{% 3.085677581e+18}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kParsecNumeric} % |\kParsecNumeric| is the length of a parsec ($\frac{648000\au}{\pi}$). % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kParsecNumeric}{% \k@SI@full@ParsecNumeric} \else \DeclareRobustCommand {\kParsecNumeric}{% \k@SI@short@ParsecNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kParsecNumeric}{% \k@cgs@full@ParsecNumeric} \else \DeclareRobustCommand {\kParsecNumeric}{% \k@cgs@short@ParsecNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@RadiusSun} % |\k@SI@short@RadiusSun| is the mean radius of the Sun in SI units with % reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@RadiusSun}{% \ensuremath{% 6.96% \times 10^{8}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@RadiusSun} % |\k@SI@full@RadiusSun| is the mean radius of the Sun in SI units with full % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@RadiusSun}{% \ensuremath{% 6.957% \times 10^{8}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@RadiusSun} % |\k@cgs@short@RadiusSun| is the mean radius of the Sun in cgs units with % reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@RadiusSun}{% \ensuremath{% 6.96% \times 10^{10}\cm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@RadiusSun} % |\k@cgs@full@RadiusSun| is the mean radius of the Sun in cgs units with full % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@RadiusSun}{% \ensuremath{% 6.957% \times 10^{10}\cm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiusSun} % |\kRadiusSun| is the mean radius of the Sun. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusSun}{% \k@SI@full@RadiusSun} \else \DeclareRobustCommand {\kRadiusSun}{% \k@SI@short@RadiusSun} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusSun}{% \k@cgs@full@RadiusSun} \else \DeclareRobustCommand {\kRadiusSun}{% \k@cgs@short@RadiusSun} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@RadiusSunNumeric} % |\k@SI@short@RadiusSunNumeric| is the mean radius of the Sun in SI units with % reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@RadiusSunNumeric}{% \ensuremath{% 6.96e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@RadiusSunNumeric} % |\k@SI@full@RadiusSunNumeric| is the mean radius of the Sun in SI units with full % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@RadiusSunNumeric}{% \ensuremath{% 6.957e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@RadiusSunNumeric} % |\k@cgs@short@RadiusSunNumeric| is the mean radius of the Sun in cgs units with % reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@RadiusSunNumeric}{% \ensuremath{% 6.96e+10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@RadiusSunNumeric} % |\k@cgs@full@RadiusSunNumeric| is the mean radius of the Sun in cgs units with full % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@RadiusSunNumeric}{% \ensuremath{% 6.957e+10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiusSunNumeric} % |\kRadiusSunNumeric| is the mean radius of the Sun. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusSunNumeric}{% \k@SI@full@RadiusSunNumeric} \else \DeclareRobustCommand {\kRadiusSunNumeric}{% \k@SI@short@RadiusSunNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusSunNumeric}{% \k@cgs@full@RadiusSunNumeric} \else \DeclareRobustCommand {\kRadiusSunNumeric}{% \k@cgs@short@RadiusSunNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@RadiusEarth} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\k@short@RadiusEarth| is the mean radius of the Earth with reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@short@RadiusEarth}{% \ensuremath{% 6.37% \times 10^{6}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@RadiusEarth} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\k@full@RadiusEarth| is the mean radius of the Earth with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@full@RadiusEarth}{% \ensuremath{% 6.371\expandafter\physconst@decimalsseparator% 0% \times 10^{6}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiusEarth} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\kRadiusEarth| is the mean radius of the Earth. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusEarth}{% \k@full@RadiusEarth} \else \DeclareRobustCommand {\kRadiusEarth}{% \k@short@RadiusEarth} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@RadiusEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\k@short@RadiusEarthNumeric| is the mean radius of the Earth with reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@short@RadiusEarthNumeric}{% \ensuremath{% 6.37e+06}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@RadiusEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\k@full@RadiusEarthNumeric| is the mean radius of the Earth with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@full@RadiusEarthNumeric}{% \ensuremath{% 6.3710e+06}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiusEarthNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Earth} % |\kRadiusEarthNumeric| is the mean radius of the Earth. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusEarthNumeric}{% \k@full@RadiusEarthNumeric} \else \DeclareRobustCommand {\kRadiusEarthNumeric}{% \k@short@RadiusEarthNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@RadiusJupiter} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\k@short@RadiusJupiter| is the mean radius of Jupiter with reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@short@RadiusJupiter}{% \ensuremath{% 6.99% \times 10^{7}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@RadiusJupiter} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\k@full@RadiusJupiter| is the mean radius of Jupiter with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@full@RadiusJupiter}{% \ensuremath{% 6.991\expandafter\physconst@decimalsseparator% 1% \times 10^{7}\m}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiusJupiter} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\kRadiusJupiter| is the mean radius of Jupiter. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusJupiter}{% \k@full@RadiusJupiter} \else \DeclareRobustCommand {\kRadiusJupiter}{% \k@short@RadiusJupiter} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@RadiusJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\k@short@RadiusJupiterNumeric| is the mean radius of Jupiter with reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@short@RadiusJupiterNumeric}{% \ensuremath{% 6.99e+07}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@RadiusJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\k@full@RadiusJupiterNumeric| is the mean radius of Jupiter with full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@full@RadiusJupiterNumeric}{% \ensuremath{% 6.9911e+07}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiusJupiterNumeric} % \changes{v1.1.0}{2020/02/03}{Add radius of Jupiter} % |\kRadiusJupiterNumeric| is the mean radius of Jupiter. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiusJupiterNumeric}{% \k@full@RadiusJupiterNumeric} \else \DeclareRobustCommand {\kRadiusJupiterNumeric}{% \k@short@RadiusJupiterNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi % %\subsection{Energy, Power, and Luminosity} % %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@Rydberg} % |\k@SI@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@Rydberg}{% \ensuremath{% 2.18% \times 10^{-18}\Joule}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@Rydberg} % |\k@SI@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in SI units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@Rydberg}{% \ensuremath{% 2.179\expandafter\physconst@decimalsseparator% 872\expandafter\physconst@decimalsseparator% 36% \times 10^{-18}\Joule}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@Rydberg} % |\k@cgs@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@Rydberg}{% \ensuremath{% 2.18% \times 10^{-11}\erg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@Rydberg} % |\k@cgs@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@Rydberg}{% \ensuremath{% 2.179\expandafter\physconst@decimalsseparator% 872\expandafter\physconst@decimalsseparator% 36% \times 10^{-11}\erg}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@Rydberg} % |\k@eV@short@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in eV with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@Rydberg}{% \ensuremath{% 1.36% \times 10^{1}\eV}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@Rydberg} % |\k@eV@full@Rydberg| is the Rydberg energy (the binding energy of Hydrogen) % in eV with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@Rydberg}{% \ensuremath{% 1.360\expandafter\physconst@decimalsseparator% 569\expandafter\physconst@decimalsseparator% 31% \times 10^{1}\eV}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRydberg} % |\kRydberg| is the Rydberg energy (the binding energy of Hydrogen). % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kRydberg}{% \k@SI@full@Rydberg} \else \DeclareRobustCommand {\kRydberg}{% \k@SI@short@Rydberg} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kRydberg}{% \k@cgs@full@Rydberg} \else \DeclareRobustCommand {\kRydberg}{% \k@cgs@short@Rydberg} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVRydberg} % |\keVRydberg| is the Rydberg energy (the binding energy of Hydrogen). % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVRydberg}{% \k@eV@full@Rydberg} \else \DeclareRobustCommand {\keVRydberg}{% \k@eV@short@Rydberg} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@RydbergNumeric} % |\k@SI@short@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen) % in SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@RydbergNumeric}{% \ensuremath{% 2.18e-18}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@RydbergNumeric} % |\k@SI@full@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen) % in SI units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@RydbergNumeric}{% \ensuremath{% 2.17987236e-18}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@RydbergNumeric} % |\k@cgs@short@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen) % in cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@RydbergNumeric}{% \ensuremath{% 2.18e-11}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@RydbergNumeric} % |\k@cgs@full@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen) % in cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@RydbergNumeric}{% \ensuremath{% 2.17987236e-11}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@RydbergNumeric} % |\k@eV@short@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen) % in eV with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@RydbergNumeric}{% \ensuremath{% 1.36e+01}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@RydbergNumeric} % |\k@eV@full@RydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen) % in eV with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@RydbergNumeric}{% \ensuremath{% 1.36056931e+01}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRydbergNumeric} % |\kRydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen). % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kRydbergNumeric}{% \k@SI@full@RydbergNumeric} \else \DeclareRobustCommand {\kRydbergNumeric}{% \k@SI@short@RydbergNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kRydbergNumeric}{% \k@cgs@full@RydbergNumeric} \else \DeclareRobustCommand {\kRydbergNumeric}{% \k@cgs@short@RydbergNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVRydbergNumeric} % |\keVRydbergNumeric| is the Rydberg energy (the binding energy of Hydrogen). % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVRydbergNumeric}{% \k@eV@full@RydbergNumeric} \else \DeclareRobustCommand {\keVRydbergNumeric}{% \k@eV@short@RydbergNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@LuminositySun} % |\k@SI@short@LuminositySun| is the luminosity of the Sun in SI units with % reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@LuminositySun}{% \ensuremath{% 3.83% \times 10^{26}\Watt}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@LuminositySun} % |\k@SI@full@LuminositySun| is the luminosity of the Sun in SI units with full % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@LuminositySun}{% \ensuremath{% 3.828% \times 10^{26}\Watt}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@LuminositySun} % |\k@cgs@short@LuminositySun| is the luminosity of the Sun in cgs units with % reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@LuminositySun}{% \ensuremath{% 3.83% \times 10^{33}\erg\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@LuminositySun} % |\k@cgs@full@LuminositySun| is the luminosity of the Sun in cgs units with % full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@LuminositySun}{% \ensuremath{% 3.828% \times 10^{33}\erg\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kLuminositySun} % |\kLuminositySun| is the luminosity of the Sun. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kLuminositySun}{% \k@SI@full@LuminositySun} \else \DeclareRobustCommand {\kLuminositySun}{% \k@SI@short@LuminositySun} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kLuminositySun}{% \k@cgs@full@LuminositySun} \else \DeclareRobustCommand {\kLuminositySun}{% \k@cgs@short@LuminositySun} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@LuminositySunNumeric} % |\k@SI@short@LuminositySunNumeric| is the luminosity of the Sun in SI units with % reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@LuminositySunNumeric}{% \ensuremath{% 3.83e+26}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@LuminositySunNumeric} % |\k@SI@full@LuminositySunNumeric| is the luminosity of the Sun in SI units with full % precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@LuminositySunNumeric}{% \ensuremath{% 3.828e+26}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@LuminositySunNumeric} % |\k@cgs@short@LuminositySunNumeric| is the luminosity of the Sun in cgs units with % reduced precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@LuminositySunNumeric}{% \ensuremath{% 3.83e+33}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@LuminositySunNumeric} % |\k@cgs@full@LuminositySunNumeric| is the luminosity of the Sun in cgs units with % full precision. % Source: IAU~Resolution~B3~2015 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@LuminositySunNumeric}{% \ensuremath{% 3.828e+33}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kLuminositySunNumeric} % |\kLuminositySunNumeric| is the luminosity of the Sun. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kLuminositySunNumeric}{% \k@SI@full@LuminositySunNumeric} \else \DeclareRobustCommand {\kLuminositySunNumeric}{% \k@SI@short@LuminositySunNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kLuminositySunNumeric}{% \k@cgs@full@LuminositySunNumeric} \else \DeclareRobustCommand {\kLuminositySunNumeric}{% \k@cgs@short@LuminositySunNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi % %\subsection{Pressure} % %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@PressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@short@PressureAtmosphere| is the standard atmospheric pressure in SI % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@PressureAtmosphere}{% \ensuremath{% 1.01% \times 10^{5}\Pa}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@PressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@full@PressureAtmosphere| is the standard atmospheric pressure in SI % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@PressureAtmosphere}{% \ensuremath{% 1.013\expandafter\physconst@decimalsseparator% 25% \times 10^{5}\Pa}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@PressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@short@PressureAtmosphere| is the standard atmospheric pressure in cgs % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@PressureAtmosphere}{% \ensuremath{% 1.01\barP}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@PressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@full@PressureAtmosphere| is the standard atmospheric pressure in cgs % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@PressureAtmosphere}{% \ensuremath{% 1.013\expandafter\physconst@decimalsseparator% 25\barP}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kPressureAtmosphere} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\kPressureAtmosphere| is the standard atmospheric pressure. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kPressureAtmosphere}{% \k@SI@full@PressureAtmosphere} \else \DeclareRobustCommand {\kPressureAtmosphere}{% \k@SI@short@PressureAtmosphere} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kPressureAtmosphere}{% \k@cgs@full@PressureAtmosphere} \else \DeclareRobustCommand {\kPressureAtmosphere}{% \k@cgs@short@PressureAtmosphere} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@PressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@short@PressureAtmosphereNumeric| is the standard atmospheric pressure in SI % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@PressureAtmosphereNumeric}{% \ensuremath{% 1.01e+05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@PressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@full@PressureAtmosphereNumeric| is the standard atmospheric pressure in SI % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@PressureAtmosphereNumeric}{% \ensuremath{% 1.01325e+05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@PressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@short@PressureAtmosphereNumeric| is the standard atmospheric pressure in cgs % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@PressureAtmosphereNumeric}{% \ensuremath{% 1.01e+00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@PressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@full@PressureAtmosphereNumeric| is the standard atmospheric pressure in cgs % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@PressureAtmosphereNumeric}{% \ensuremath{% 1.01325e+00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kPressureAtmosphereNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\kPressureAtmosphereNumeric| is the standard atmospheric pressure. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kPressureAtmosphereNumeric}{% \k@SI@full@PressureAtmosphereNumeric} \else \DeclareRobustCommand {\kPressureAtmosphereNumeric}{% \k@SI@short@PressureAtmosphereNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kPressureAtmosphereNumeric}{% \k@cgs@full@PressureAtmosphereNumeric} \else \DeclareRobustCommand {\kPressureAtmosphereNumeric}{% \k@cgs@short@PressureAtmosphereNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@PressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@short@PressureStandard| is the standard atmospheric pressure in SI % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@PressureStandard}{% \ensuremath{% 1.00% \times 10^{5}\Pa}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@PressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@full@PressureStandard| is the standard atmospheric pressure in SI % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@PressureStandard}{% \ensuremath{% 1.000\expandafter\physconst@decimalsseparator% 00% \times 10^{5}\Pa}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@PressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@short@PressureStandard| is the standard atmospheric pressure in cgs % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@PressureStandard}{% \ensuremath{% 1.00\barP}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@PressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@full@PressureStandard| is the standard atmospheric pressure in cgs % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@PressureStandard}{% \ensuremath{% 1.000\expandafter\physconst@decimalsseparator% 00\barP}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kPressureStandard} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\kPressureStandard| is the standard atmospheric pressure. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kPressureStandard}{% \k@SI@full@PressureStandard} \else \DeclareRobustCommand {\kPressureStandard}{% \k@SI@short@PressureStandard} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kPressureStandard}{% \k@cgs@full@PressureStandard} \else \DeclareRobustCommand {\kPressureStandard}{% \k@cgs@short@PressureStandard} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@PressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@short@PressureStandardNumeric| is the standard atmospheric pressure in SI % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@PressureStandardNumeric}{% \ensuremath{% 1.00e+05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@PressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@SI@full@PressureStandardNumeric| is the standard atmospheric pressure in SI % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@PressureStandardNumeric}{% \ensuremath{% 1.00000e+05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@PressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@short@PressureStandardNumeric| is the standard atmospheric pressure in cgs % units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@PressureStandardNumeric}{% \ensuremath{% 1.00e+00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@PressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\k@cgs@full@PressureStandardNumeric| is the standard atmospheric pressure in cgs % units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@PressureStandardNumeric}{% \ensuremath{% 1.00000e+00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kPressureStandardNumeric} % \changes{v1.1.0}{2020/02/03}{Fix prefix of units.} % |\kPressureStandardNumeric| is the standard atmospheric pressure. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kPressureStandardNumeric}{% \k@SI@full@PressureStandardNumeric} \else \DeclareRobustCommand {\kPressureStandardNumeric}{% \k@SI@short@PressureStandardNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kPressureStandardNumeric}{% \k@cgs@full@PressureStandardNumeric} \else \DeclareRobustCommand {\kPressureStandardNumeric}{% \k@cgs@short@PressureStandardNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi % %\subsection{Velocity, Speed and Acceleration} % %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@SpeedLight} % |\k@SI@short@SpeedLight| is the speed of light in SI units with reduced % precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@SpeedLight}{% \ensuremath{% 3.00% \times 10^{8}\m\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@SpeedLight} % |\k@SI@full@SpeedLight| is the speed of light in SI units with full precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@SpeedLight}{% \ensuremath{% 2.997\expandafter\physconst@decimalsseparator% 924\expandafter\physconst@decimalsseparator% 58% \times 10^{8}\m\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@SpeedLight} % |\k@cgs@short@SpeedLight| is the speed of light in cgs units with reduced % precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@SpeedLight}{% \ensuremath{% 3.00% \times 10^{10}\cm\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@SpeedLight} % |\k@cgs@full@SpeedLight| is the speed of light in cgs units with full % precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@SpeedLight}{% \ensuremath{% 2.997\expandafter\physconst@decimalsseparator% 924\expandafter\physconst@decimalsseparator% 58% \times 10^{10}\cm\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kSpeedLight} % |\kSpeedLight| is the speed of light. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kSpeedLight}{% \k@SI@full@SpeedLight} \else \DeclareRobustCommand {\kSpeedLight}{% \k@SI@short@SpeedLight} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kSpeedLight}{% \k@cgs@full@SpeedLight} \else \DeclareRobustCommand {\kSpeedLight}{% \k@cgs@short@SpeedLight} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@SpeedLightNumeric} % |\k@SI@short@SpeedLightNumeric| is the speed of light in SI units with reduced % precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@SpeedLightNumeric}{% \ensuremath{% 3.00e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@SpeedLightNumeric} % |\k@SI@full@SpeedLightNumeric| is the speed of light in SI units with full precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@SpeedLightNumeric}{% \ensuremath{% 2.99792458e+08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@SpeedLightNumeric} % |\k@cgs@short@SpeedLightNumeric| is the speed of light in cgs units with reduced % precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@SpeedLightNumeric}{% \ensuremath{% 3.00e+10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@SpeedLightNumeric} % |\k@cgs@full@SpeedLightNumeric| is the speed of light in cgs units with full % precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@SpeedLightNumeric}{% \ensuremath{% 2.99792458e+10}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kSpeedLightNumeric} % |\kSpeedLightNumeric| is the speed of light. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kSpeedLightNumeric}{% \k@SI@full@SpeedLightNumeric} \else \DeclareRobustCommand {\kSpeedLightNumeric}{% \k@SI@short@SpeedLightNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kSpeedLightNumeric}{% \k@cgs@full@SpeedLightNumeric} \else \DeclareRobustCommand {\kSpeedLightNumeric}{% \k@cgs@short@SpeedLightNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@AccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@SI@short@AccelGravity| is the accelertion due to gravity at the surface % of the Earth in SI units with reduced precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@AccelGravity}{% \ensuremath{% 9.81\m\Sec^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@AccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@SI@full@AccelGravity| is the accelertion due to gravity at the surface of % the Earth in SI units with full precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@AccelGravity}{% \ensuremath{% 9.806\expandafter\physconst@decimalsseparator% 65\m\Sec^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@AccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@cgs@short@AccelGravity| is the accelertion due to gravity at the surface % of the Earth in cgs units with reduced precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@AccelGravity}{% \ensuremath{% 9.81% \times 10^{2}\cm\Sec^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@AccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@cgs@full@AccelGravity| is the accelertion due to gravity at the surface % of the Earth in cgs units with full precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@AccelGravity}{% \ensuremath{% 9.806\expandafter\physconst@decimalsseparator% 65% \times 10^{2}\cm\Sec^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kAccelGravity} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\kAccelGravity| is the accelertion due to gravity at the surface of the % Earth. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kAccelGravity}{% \k@SI@full@AccelGravity} \else \DeclareRobustCommand {\kAccelGravity}{% \k@SI@short@AccelGravity} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kAccelGravity}{% \k@cgs@full@AccelGravity} \else \DeclareRobustCommand {\kAccelGravity}{% \k@cgs@short@AccelGravity} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@AccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@SI@short@AccelGravityNumeric| is the accelertion due to gravity at the surface % of the Earth in SI units with reduced precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@AccelGravityNumeric}{% \ensuremath{% 9.81e+00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@AccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@SI@full@AccelGravityNumeric| is the accelertion due to gravity at the surface of % the Earth in SI units with full precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@AccelGravityNumeric}{% \ensuremath{% 9.80665e+00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@AccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@cgs@short@AccelGravityNumeric| is the accelertion due to gravity at the surface % of the Earth in cgs units with reduced precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@AccelGravityNumeric}{% \ensuremath{% 9.81e+02}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@AccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\k@cgs@full@AccelGravityNumeric| is the accelertion due to gravity at the surface % of the Earth in cgs units with full precision. % Source: CODATA 2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@AccelGravityNumeric}{% \ensuremath{% 9.80665e+02}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kAccelGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Correct value.} % \changes{v1.1.0}{2020/02/03}{Fix units.} % |\kAccelGravityNumeric| is the accelertion due to gravity at the surface of the % Earth. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kAccelGravityNumeric}{% \k@SI@full@AccelGravityNumeric} \else \DeclareRobustCommand {\kAccelGravityNumeric}{% \k@SI@short@AccelGravityNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kAccelGravityNumeric}{% \k@cgs@full@AccelGravityNumeric} \else \DeclareRobustCommand {\kAccelGravityNumeric}{% \k@cgs@short@AccelGravityNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi % %\subsection{Other Constants} % %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@Coulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in % SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@Coulomb}{% \ensuremath{% 8.99% \times 10^{9}\N\m^2\Coulomb^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@Coulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in % SI units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@Coulomb}{% \ensuremath{% 8.987\expandafter\physconst@decimalsseparator% 551\expandafter\physconst@decimalsseparator% 79% \times 10^{9}\N\m^2\Coulomb^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@Coulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) % in cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@Coulomb}{% \ensuremath{% 1.00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@Coulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@Coulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in % cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@Coulomb}{% \ensuremath{% 1.000\expandafter\physconst@decimalsseparator% 000\expandafter\physconst@decimalsseparator% 00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kCoulomb} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\kCoulomb| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$). % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kCoulomb}{% \k@SI@full@Coulomb} \else \DeclareRobustCommand {\kCoulomb}{% \k@SI@short@Coulomb} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kCoulomb}{% \k@cgs@full@Coulomb} \else \DeclareRobustCommand {\kCoulomb}{% \k@cgs@short@Coulomb} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@CoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@CoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in % SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@CoulombNumeric}{% \ensuremath{% 8.99e+09}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@CoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@CoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in % SI units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@CoulombNumeric}{% \ensuremath{% 8.98755179e+09}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@CoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@CoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) % in cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@CoulombNumeric}{% \ensuremath{% 1.00e+00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@CoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@CoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$) in % cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@CoulombNumeric}{% \ensuremath{% 1.00000000e+00}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kCoulombNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\kCoulombNumeric| is the Coulomb constant ($\frac{1}{4\pi\epsilon_0}$). % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kCoulombNumeric}{% \k@SI@full@CoulombNumeric} \else \DeclareRobustCommand {\kCoulombNumeric}{% \k@SI@short@CoulombNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kCoulombNumeric}{% \k@cgs@full@CoulombNumeric} \else \DeclareRobustCommand {\kCoulombNumeric}{% \k@cgs@short@CoulombNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@VacuumPermittivity} % |\k@SI@short@VacuumPermittivity| is the electric permittivity of the vacuum % in SI units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@VacuumPermittivity}{% \ensuremath{% 8.85% \times 10^{-12}\Farad\m^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@VacuumPermittivity} % |\k@SI@full@VacuumPermittivity| is the electric permittivity of the vacuum in % SI units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@VacuumPermittivity}{% \ensuremath{% 8.854\expandafter\physconst@decimalsseparator% 187\expandafter\physconst@decimalsseparator% 812\expandafter\physconst@decimalsseparator% 8% \times 10^{-12}\Farad\m^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@VacuumPermittivity} % |\k@cgs@short@VacuumPermittivity| is the electric permittivity of the vacuum % in cgs units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@VacuumPermittivity}{% \ensuremath{% 7.96% \times 10^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@VacuumPermittivity} % |\k@cgs@full@VacuumPermittivity| is the electric permittivity of the vacuum % in cgs units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@VacuumPermittivity}{% \ensuremath{% 7.957\expandafter\physconst@decimalsseparator% 747\expandafter\physconst@decimalsseparator% 154\expandafter\physconst@decimalsseparator% 6% \times 10^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kVacuumPermittivity} % |\kVacuumPermittivity| is the electric permittivity of the vacuum. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumPermittivity}{% \k@SI@full@VacuumPermittivity} \else \DeclareRobustCommand {\kVacuumPermittivity}{% \k@SI@short@VacuumPermittivity} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumPermittivity}{% \k@cgs@full@VacuumPermittivity} \else \DeclareRobustCommand {\kVacuumPermittivity}{% \k@cgs@short@VacuumPermittivity} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@VacuumPermittivityNumeric} % |\k@SI@short@VacuumPermittivityNumeric| is the electric permittivity of the vacuum % in SI units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@VacuumPermittivityNumeric}{% \ensuremath{% 8.85e-12}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@VacuumPermittivityNumeric} % |\k@SI@full@VacuumPermittivityNumeric| is the electric permittivity of the vacuum in % SI units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@VacuumPermittivityNumeric}{% \ensuremath{% 8.8541878128e-12}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@VacuumPermittivityNumeric} % |\k@cgs@short@VacuumPermittivityNumeric| is the electric permittivity of the vacuum % in cgs units with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@VacuumPermittivityNumeric}{% \ensuremath{% 7.96e-02}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@VacuumPermittivityNumeric} % |\k@cgs@full@VacuumPermittivityNumeric| is the electric permittivity of the vacuum % in cgs units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@VacuumPermittivityNumeric}{% \ensuremath{% 7.9577471546e-02}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kVacuumPermittivityNumeric} % |\kVacuumPermittivityNumeric| is the electric permittivity of the vacuum. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumPermittivityNumeric}{% \k@SI@full@VacuumPermittivityNumeric} \else \DeclareRobustCommand {\kVacuumPermittivityNumeric}{% \k@SI@short@VacuumPermittivityNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumPermittivityNumeric}{% \k@cgs@full@VacuumPermittivityNumeric} \else \DeclareRobustCommand {\kVacuumPermittivityNumeric}{% \k@cgs@short@VacuumPermittivityNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@VacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@short@VacuumPermeability| is the magnetic permeability of the vacuum % in SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@VacuumPermeability}{% \ensuremath{% 1.26% \times 10^{-6}\N\Amp^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@VacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@full@VacuumPermeability| is the magnetic permeability of the vacuum in % SI units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@VacuumPermeability}{% \ensuremath{% 1.256\expandafter\physconst@decimalsseparator% 637\expandafter\physconst@decimalsseparator% 062\expandafter\physconst@decimalsseparator% 1% \times 10^{-6}\N\Amp^{-2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@VacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@short@VacuumPermeability| is the magnetic permeability of the vacuum % in cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@VacuumPermeability}{% \ensuremath{% 1.26% \times 10^{1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@VacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@full@VacuumPermeability| is the magnetic permeability of the vacuum % in cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@VacuumPermeability}{% \ensuremath{% 1.256\expandafter\physconst@decimalsseparator% 637\expandafter\physconst@decimalsseparator% 061\expandafter\physconst@decimalsseparator% 4% \times 10^{1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kVacuumPermeability} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\kVacuumPermeability| is the magnetic permeability of the vacuum. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumPermeability}{% \k@SI@full@VacuumPermeability} \else \DeclareRobustCommand {\kVacuumPermeability}{% \k@SI@short@VacuumPermeability} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumPermeability}{% \k@cgs@full@VacuumPermeability} \else \DeclareRobustCommand {\kVacuumPermeability}{% \k@cgs@short@VacuumPermeability} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@VacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@short@VacuumPermeabilityNumeric| is the magnetic permeability of the vacuum % in SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@VacuumPermeabilityNumeric}{% \ensuremath{% 1.26e-06}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@VacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@full@VacuumPermeabilityNumeric| is the magnetic permeability of the vacuum in % SI units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@VacuumPermeabilityNumeric}{% \ensuremath{% 1.2566370621e-06}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@VacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@short@VacuumPermeabilityNumeric| is the magnetic permeability of the vacuum % in cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@VacuumPermeabilityNumeric}{% \ensuremath{% 1.26e+01}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@VacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@full@VacuumPermeabilityNumeric| is the magnetic permeability of the vacuum % in cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@VacuumPermeabilityNumeric}{% \ensuremath{% 1.2566370614e+01}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kVacuumPermeabilityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\kVacuumPermeabilityNumeric| is the magnetic permeability of the vacuum. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumPermeabilityNumeric}{% \k@SI@full@VacuumPermeabilityNumeric} \else \DeclareRobustCommand {\kVacuumPermeabilityNumeric}{% \k@SI@short@VacuumPermeabilityNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumPermeabilityNumeric}{% \k@cgs@full@VacuumPermeabilityNumeric} \else \DeclareRobustCommand {\kVacuumPermeabilityNumeric}{% \k@cgs@short@VacuumPermeabilityNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@VacuumImpedance} % |\k@short@VacuumImpedance| is the characteristic impedance of the vacuum with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@short@VacuumImpedance}{% \ensuremath{% 3.77% \times 10^{2}\Ohm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@VacuumImpedance} % |\k@full@VacuumImpedance| is the characteristic impedance of the vacuum with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@full@VacuumImpedance}{% \ensuremath{% 3.767\expandafter\physconst@decimalsseparator% 303\expandafter\physconst@decimalsseparator% 136\expandafter\physconst@decimalsseparator% 68% \times 10^{2}\Ohm}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kVacuumImpedance} % |\kVacuumImpedance| is the characteristic impedance of the vacuum. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumImpedance}{% \k@full@VacuumImpedance} \else \DeclareRobustCommand {\kVacuumImpedance}{% \k@short@VacuumImpedance} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@VacuumImpedanceNumeric} % |\k@short@VacuumImpedanceNumeric| is the characteristic impedance of the vacuum with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@short@VacuumImpedanceNumeric}{% \ensuremath{% 3.77e+02}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@VacuumImpedanceNumeric} % |\k@full@VacuumImpedanceNumeric| is the characteristic impedance of the vacuum with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@full@VacuumImpedanceNumeric}{% \ensuremath{% 3.76730313668e+02}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kVacuumImpedanceNumeric} % |\kVacuumImpedanceNumeric| is the characteristic impedance of the vacuum. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kVacuumImpedanceNumeric}{% \k@full@VacuumImpedanceNumeric} \else \DeclareRobustCommand {\kVacuumImpedanceNumeric}{% \k@short@VacuumImpedanceNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@Boltzmann} % |\k@SI@short@Boltzmann| is the Boltzmann constant in SI units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@Boltzmann}{% \ensuremath{% 1.38% \times 10^{-23}\J\K^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@Boltzmann} % |\k@SI@full@Boltzmann| is the Boltzmann constant in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@Boltzmann}{% \ensuremath{% 1.380\expandafter\physconst@decimalsseparator% 649% \times 10^{-23}\J\K^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@Boltzmann} % |\k@cgs@short@Boltzmann| is the Boltzmann constant in cgs units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@Boltzmann}{% \ensuremath{% 1.38% \times 10^{-16}\erg\K^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@Boltzmann} % |\k@cgs@full@Boltzmann| is the Boltzmann constant in cgs units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@Boltzmann}{% \ensuremath{% 1.380\expandafter\physconst@decimalsseparator% 649% \times 10^{-16}\erg\K^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@Boltzmann} % |\k@eV@short@Boltzmann| is the Boltzmann constant in eV with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@Boltzmann}{% \ensuremath{% 8.62% \times 10^{-5}\eV\K^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@Boltzmann} % |\k@eV@full@Boltzmann| is the Boltzmann constant in eV with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@Boltzmann}{% \ensuremath{% 8.617\expandafter\physconst@decimalsseparator% 333% \times 10^{-5}\eV\K^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kBoltzmann} % |\kBoltzmann| is the Boltzmann constant. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kBoltzmann}{% \k@SI@full@Boltzmann} \else \DeclareRobustCommand {\kBoltzmann}{% \k@SI@short@Boltzmann} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kBoltzmann}{% \k@cgs@full@Boltzmann} \else \DeclareRobustCommand {\kBoltzmann}{% \k@cgs@short@Boltzmann} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVBoltzmann} % |\keVBoltzmann| is the Boltzmann constant. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVBoltzmann}{% \k@eV@full@Boltzmann} \else \DeclareRobustCommand {\keVBoltzmann}{% \k@eV@short@Boltzmann} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@BoltzmannNumeric} % |\k@SI@short@BoltzmannNumeric| is the Boltzmann constant in SI units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@BoltzmannNumeric}{% \ensuremath{% 1.38e-23}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@BoltzmannNumeric} % |\k@SI@full@BoltzmannNumeric| is the Boltzmann constant in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@BoltzmannNumeric}{% \ensuremath{% 1.380649e-23}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@BoltzmannNumeric} % |\k@cgs@short@BoltzmannNumeric| is the Boltzmann constant in cgs units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@BoltzmannNumeric}{% \ensuremath{% 1.38e-16}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@BoltzmannNumeric} % |\k@cgs@full@BoltzmannNumeric| is the Boltzmann constant in cgs units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@BoltzmannNumeric}{% \ensuremath{% 1.380649e-16}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@BoltzmannNumeric} % |\k@eV@short@BoltzmannNumeric| is the Boltzmann constant in eV with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@BoltzmannNumeric}{% \ensuremath{% 8.62e-05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@BoltzmannNumeric} % |\k@eV@full@BoltzmannNumeric| is the Boltzmann constant in eV with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@BoltzmannNumeric}{% \ensuremath{% 8.617333e-05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kBoltzmannNumeric} % |\kBoltzmannNumeric| is the Boltzmann constant. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kBoltzmannNumeric}{% \k@SI@full@BoltzmannNumeric} \else \DeclareRobustCommand {\kBoltzmannNumeric}{% \k@SI@short@BoltzmannNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kBoltzmannNumeric}{% \k@cgs@full@BoltzmannNumeric} \else \DeclareRobustCommand {\kBoltzmannNumeric}{% \k@cgs@short@BoltzmannNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVBoltzmannNumeric} % |\keVBoltzmannNumeric| is the Boltzmann constant. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVBoltzmannNumeric}{% \k@eV@full@BoltzmannNumeric} \else \DeclareRobustCommand {\keVBoltzmannNumeric}{% \k@eV@short@BoltzmannNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@Planck| is the Planck constant in SI units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@Planck}{% \ensuremath{% 6.63% \times 10^{-34}\J\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@Planck| is the Planck constant in SI units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@Planck}{% \ensuremath{% 6.626\expandafter\physconst@decimalsseparator% 070\expandafter\physconst@decimalsseparator% 15% \times 10^{-34}\J\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@Planck| is the Planck constant in cgs units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@Planck}{% \ensuremath{% 6.63% \times 10^{-27}\erg\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@Planck| is the Planck constant in cgs units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@Planck}{% \ensuremath{% 6.626\expandafter\physconst@decimalsseparator% 070\expandafter\physconst@decimalsseparator% 15% \times 10^{-27}\erg\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@short@Planck| is the Planck constant in eV with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@Planck}{% \ensuremath{% 4.14% \times 10^{-15}\eV\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@Planck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@full@Planck| is the Planck constant in eV with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@Planck}{% \ensuremath{% 4.135\expandafter\physconst@decimalsseparator% 667\expandafter\physconst@decimalsseparator% 70% \times 10^{-15}\eV\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kPlanck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\kPlanck| is the Planck constant. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kPlanck}{% \k@SI@full@Planck} \else \DeclareRobustCommand {\kPlanck}{% \k@SI@short@Planck} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kPlanck}{% \k@cgs@full@Planck} \else \DeclareRobustCommand {\kPlanck}{% \k@cgs@short@Planck} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVPlanck} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\keVPlanck| is the Planck constant. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVPlanck}{% \k@eV@full@Planck} \else \DeclareRobustCommand {\keVPlanck}{% \k@eV@short@Planck} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@PlanckNumeric| is the Planck constant in SI units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@PlanckNumeric}{% \ensuremath{% 6.63e-34}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@PlanckNumeric| is the Planck constant in SI units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@PlanckNumeric}{% \ensuremath{% 6.62607015e-34}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@PlanckNumeric| is the Planck constant in cgs units with reduced % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@PlanckNumeric}{% \ensuremath{% 6.63e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@PlanckNumeric| is the Planck constant in cgs units with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@PlanckNumeric}{% \ensuremath{% 6.62607015e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@short@PlanckNumeric| is the Planck constant in eV with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@PlanckNumeric}{% \ensuremath{% 4.14e-15}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@PlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@full@PlanckNumeric| is the Planck constant in eV with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@PlanckNumeric}{% \ensuremath{% 4.13566770e-15}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kPlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\kPlanckNumeric| is the Planck constant. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kPlanckNumeric}{% \k@SI@full@PlanckNumeric} \else \DeclareRobustCommand {\kPlanckNumeric}{% \k@SI@short@PlanckNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kPlanckNumeric}{% \k@cgs@full@PlanckNumeric} \else \DeclareRobustCommand {\kPlanckNumeric}{% \k@cgs@short@PlanckNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVPlanckNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\keVPlanckNumeric| is the Planck constant. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVPlanckNumeric}{% \k@eV@full@PlanckNumeric} \else \DeclareRobustCommand {\keVPlanckNumeric}{% \k@eV@short@PlanckNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@PlanckReduced}{% \ensuremath{% 1.05% \times 10^{-34}\J\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in SI units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@PlanckReduced}{% \ensuremath{% 1.054\expandafter\physconst@decimalsseparator% 571\expandafter\physconst@decimalsseparator% 82% \times 10^{-34}\J\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@PlanckReduced}{% \ensuremath{% 1.05% \times 10^{-27}\erg\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@PlanckReduced}{% \ensuremath{% 1.054\expandafter\physconst@decimalsseparator% 571\expandafter\physconst@decimalsseparator% 82% \times 10^{-27}\erg\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@short@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in eV with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@PlanckReduced}{% \ensuremath{% 6.58% \times 10^{-16}\eV\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@PlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@full@PlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in eV with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@PlanckReduced}{% \ensuremath{% 6.582\expandafter\physconst@decimalsseparator% 119\expandafter\physconst@decimalsseparator% 57% \times 10^{-16}\eV\Sec}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kPlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\kPlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kPlanckReduced}{% \k@SI@full@PlanckReduced} \else \DeclareRobustCommand {\kPlanckReduced}{% \k@SI@short@PlanckReduced} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kPlanckReduced}{% \k@cgs@full@PlanckReduced} \else \DeclareRobustCommand {\kPlanckReduced}{% \k@cgs@short@PlanckReduced} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVPlanckReduced} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\keVPlanckReduced| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVPlanckReduced}{% \k@eV@full@PlanckReduced} \else \DeclareRobustCommand {\keVPlanckReduced}{% \k@eV@short@PlanckReduced} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@PlanckReducedNumeric| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in SI units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@PlanckReducedNumeric}{% \ensuremath{% 1.05e-34}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@PlanckReducedNumeric| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in SI units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@PlanckReducedNumeric}{% \ensuremath{% 1.05457182e-34}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@PlanckReducedNumeric| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in cgs units with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@PlanckReducedNumeric}{% \ensuremath{% 1.05e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@PlanckReducedNumeric| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in cgs units with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@PlanckReducedNumeric}{% \ensuremath{% 1.05457182e-27}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@short@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@short@PlanckReducedNumeric| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in eV with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@eV@short@PlanckReducedNumeric}{% \ensuremath{% 6.58e-16}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@eV@full@PlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@eV@full@PlanckReducedNumeric| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$ in eV with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@eV@full@PlanckReducedNumeric}{% \ensuremath{% 6.58211957e-16}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kPlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\kPlanckReducedNumeric| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kPlanckReducedNumeric}{% \k@SI@full@PlanckReducedNumeric} \else \DeclareRobustCommand {\kPlanckReducedNumeric}{% \k@SI@short@PlanckReducedNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kPlanckReducedNumeric}{% \k@cgs@full@PlanckReducedNumeric} \else \DeclareRobustCommand {\kPlanckReducedNumeric}{% \k@cgs@short@PlanckReducedNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\keVPlanckReducedNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\keVPlanckReducedNumeric| is the Reduced Planck constant % $\left(\frac{h}{2\pi}\right)$. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\keVPlanckReducedNumeric}{% \k@eV@full@PlanckReducedNumeric} \else \DeclareRobustCommand {\keVPlanckReducedNumeric}{% \k@eV@short@PlanckReducedNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@Gravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@short@Gravity| is Newton's gravitational constant in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@Gravity}{% \ensuremath{% 6.67% \times 10^{-11}\N\kg^{-2}\m^2}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@Gravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@full@Gravity| is Newton's gravitational constant in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@Gravity}{% \ensuremath{% 6.674\expandafter\physconst@decimalsseparator% 30% \times 10^{-11}\N\kg^{-2}\m^2}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@Gravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@short@Gravity| is Newton's gravitational constant in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@Gravity}{% \ensuremath{% 6.67% \times 10^{-8}\dyne\gm^{-2}\cm^2}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@Gravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@full@Gravity| is Newton's gravitational constant in cgs units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@Gravity}{% \ensuremath{% 6.674\expandafter\physconst@decimalsseparator% 30% \times 10^{-8}\dyne\gm^{-2}\cm^2}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kGravity} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\kGravity| is Newton's gravitational constant. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kGravity}{% \k@SI@full@Gravity} \else \DeclareRobustCommand {\kGravity}{% \k@SI@short@Gravity} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kGravity}{% \k@cgs@full@Gravity} \else \DeclareRobustCommand {\kGravity}{% \k@cgs@short@Gravity} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@GravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@short@GravityNumeric| is Newton's gravitational constant in SI units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@GravityNumeric}{% \ensuremath{% 6.67e-11}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@GravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@SI@full@GravityNumeric| is Newton's gravitational constant in SI units with full % precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@GravityNumeric}{% \ensuremath{% 6.67430e-11}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@GravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@short@GravityNumeric| is Newton's gravitational constant in cgs units with % reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@GravityNumeric}{% \ensuremath{% 6.67e-08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@GravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\k@cgs@full@GravityNumeric| is Newton's gravitational constant in cgs units with % full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@GravityNumeric}{% \ensuremath{% 6.67430e-08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kGravityNumeric} % \changes{v1.1.0}{2020/02/03}{Fix value of constant.} % |\kGravityNumeric| is Newton's gravitational constant. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kGravityNumeric}{% \k@SI@full@GravityNumeric} \else \DeclareRobustCommand {\kGravityNumeric}{% \k@SI@short@GravityNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kGravityNumeric}{% \k@cgs@full@GravityNumeric} \else \DeclareRobustCommand {\kGravityNumeric}{% \k@cgs@short@GravityNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@StefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@StefanBoltzmann}{% \ensuremath{% 5.67% \times 10^{-8}\J\Kelvin^{-4}\m^{-2}\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@StefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@StefanBoltzmann}{% \ensuremath{% 5.670\expandafter\physconst@decimalsseparator% 374% \times 10^{-8}\J\Kelvin^{-4}\m^{-2}\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@StefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@StefanBoltzmann}{% \ensuremath{% 5.67% \times 10^{-5}\erg\Kelvin^{-4}\cm^{-2}\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@StefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@StefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@StefanBoltzmann}{% \ensuremath{% 5.670\expandafter\physconst@decimalsseparator% 374% \times 10^{-5}\erg\Kelvin^{-4}\cm^{-2}\Sec^{-1}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kStefanBoltzmann} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\kStefanBoltzmann| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kStefanBoltzmann}{% \k@SI@full@StefanBoltzmann} \else \DeclareRobustCommand {\kStefanBoltzmann}{% \k@SI@short@StefanBoltzmann} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kStefanBoltzmann}{% \k@cgs@full@StefanBoltzmann} \else \DeclareRobustCommand {\kStefanBoltzmann}{% \k@cgs@short@StefanBoltzmann} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@StefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@short@StefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@StefanBoltzmannNumeric}{% \ensuremath{% 5.67e-08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@StefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@SI@full@StefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in SI units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@StefanBoltzmannNumeric}{% \ensuremath{% 5.670374e-08}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@StefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@short@StefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@StefanBoltzmannNumeric}{% \ensuremath{% 5.67e-05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@StefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\k@cgs@full@StefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$ in cgs units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@StefanBoltzmannNumeric}{% \ensuremath{% 5.670374e-05}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kStefanBoltzmannNumeric} % \changes{v1.1.0}{2020/02/03}{Fix order of magnitude of constant.} % |\kStefanBoltzmannNumeric| is the Stefan-Boltzmann blackbody constant % $\left(\frac{2\pi^5k_\mathrm{B}}{15h^3c^2}\right)$. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kStefanBoltzmannNumeric}{% \k@SI@full@StefanBoltzmannNumeric} \else \DeclareRobustCommand {\kStefanBoltzmannNumeric}{% \k@SI@short@StefanBoltzmannNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kStefanBoltzmannNumeric}{% \k@cgs@full@StefanBoltzmannNumeric} \else \DeclareRobustCommand {\kStefanBoltzmannNumeric}{% \k@cgs@short@StefanBoltzmannNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@Radiation} % |\k@SI@short@Radiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@Radiation}{% \ensuremath{% 7.57% \times 10^{-16}\Joule\m^{-3}\Kelvin^{-4}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@Radiation} % |\k@SI@full@Radiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@Radiation}{% \ensuremath{% 7.565\expandafter\physconst@decimalsseparator% 733% \times 10^{-16}\Joule\m^{-3}\Kelvin^{-4}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@Radiation} % |\k@cgs@short@Radiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@Radiation}{% \ensuremath{% 7.57% \times 10^{-15}\erg\cm^{-3}\Kelvin^{-4}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@Radiation} % |\k@cgs@full@Radiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@Radiation}{% \ensuremath{% 7.565\expandafter\physconst@decimalsseparator% 733% \times 10^{-15}\erg\cm^{-3}\Kelvin^{-4}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiation} % |\kRadiation| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiation}{% \k@SI@full@Radiation} \else \DeclareRobustCommand {\kRadiation}{% \k@SI@short@Radiation} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiation}{% \k@cgs@full@Radiation} \else \DeclareRobustCommand {\kRadiation}{% \k@cgs@short@Radiation} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@short@RadiationNumeric} % |\k@SI@short@RadiationNumeric| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@short@RadiationNumeric}{% \ensuremath{% 7.57e-16}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@SI@full@RadiationNumeric} % |\k@SI@full@RadiationNumeric| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in SI units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@SI@full@RadiationNumeric}{% \ensuremath{% 7.565733e-16}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@short@RadiationNumeric} % |\k@cgs@short@RadiationNumeric| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@short@RadiationNumeric}{% \ensuremath{% 7.57e-15}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@cgs@full@RadiationNumeric} % |\k@cgs@full@RadiationNumeric| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$ in cgs units with full % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@cgs@full@RadiationNumeric}{% \ensuremath{% 7.565733e-15}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kRadiationNumeric} % |\kRadiationNumeric| is the radiation constant, $a % \left(\frac{8\pi^5k_\mathrm{B}^4}{15c^3h^3}\right)$. % % \begin{macrocode} \ifx\cgsunits\undefined \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiationNumeric}{% \k@SI@full@RadiationNumeric} \else \DeclareRobustCommand {\kRadiationNumeric}{% \k@SI@short@RadiationNumeric} \fi \else \ifx\shortconst\undefined \DeclareRobustCommand {\kRadiationNumeric}{% \k@cgs@full@RadiationNumeric} \else \DeclareRobustCommand {\kRadiationNumeric}{% \k@cgs@short@RadiationNumeric} \fi \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@FineStructure} % |\k@short@FineStructure| is the fine structure constant with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@short@FineStructure}{% \ensuremath{% 7.30% \times 10^{-3}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@FineStructure} % |\k@full@FineStructure| is the fine structure constant with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@full@FineStructure}{% \ensuremath{% 7.297\expandafter\physconst@decimalsseparator% 352\expandafter\physconst@decimalsseparator% 57% \times 10^{-3}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kFineStructure} % |\kFineStructure| is the fine structure constant. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kFineStructure}{% \k@full@FineStructure} \else \DeclareRobustCommand {\kFineStructure}{% \k@short@FineStructure} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@FineStructureNumeric} % |\k@short@FineStructureNumeric| is the fine structure constant with reduced % precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@short@FineStructureNumeric}{% \ensuremath{% 7.30e-03}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@FineStructureNumeric} % |\k@full@FineStructureNumeric| is the fine structure constant with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@full@FineStructureNumeric}{% \ensuremath{% 7.29735257e-03}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kFineStructureNumeric} % |\kFineStructureNumeric| is the fine structure constant. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kFineStructureNumeric}{% \k@full@FineStructureNumeric} \else \DeclareRobustCommand {\kFineStructureNumeric}{% \k@short@FineStructureNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@FineStructureReciprocal} % |\k@short@FineStructureReciprocal| is the reciprocal of the fine structure % constant with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@short@FineStructureReciprocal}{% \ensuremath{% 1.37% \times 10^{2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@FineStructureReciprocal} % |\k@full@FineStructureReciprocal| is the reciprocal of the fine structure % constant with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@full@FineStructureReciprocal}{% \ensuremath{% 1.370\expandafter\physconst@decimalsseparator% 359\expandafter\physconst@decimalsseparator% 99% \times 10^{2}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kFineStructureReciprocal} % |\kFineStructureReciprocal| is the reciprocal of the fine structure constant. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kFineStructureReciprocal}{% \k@full@FineStructureReciprocal} \else \DeclareRobustCommand {\kFineStructureReciprocal}{% \k@short@FineStructureReciprocal} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@FineStructureReciprocalNumeric} % |\k@short@FineStructureReciprocalNumeric| is the reciprocal of the fine structure % constant with reduced precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@short@FineStructureReciprocalNumeric}{% \ensuremath{% 1.37e+02}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@FineStructureReciprocalNumeric} % |\k@full@FineStructureReciprocalNumeric| is the reciprocal of the fine structure % constant with full precision. % Source: Calculated % % \begin{macrocode} \DeclareRobustCommand{\k@full@FineStructureReciprocalNumeric}{% \ensuremath{% 1.37035999e+02}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kFineStructureReciprocalNumeric} % |\kFineStructureReciprocalNumeric| is the reciprocal of the fine structure constant. % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kFineStructureReciprocalNumeric}{% \k@full@FineStructureReciprocalNumeric} \else \DeclareRobustCommand {\kFineStructureReciprocalNumeric}{% \k@short@FineStructureReciprocalNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@Avogadro} % |\k@short@Avogadro| is Avogadro's Number (the number of particles in a mole) % with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@short@Avogadro}{% \ensuremath{% 6.02% \times 10^{23}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@Avogadro} % |\k@full@Avogadro| is Avogadro's Number (the number of particles in a mole) % with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@full@Avogadro}{% \ensuremath{% 6.022\expandafter\physconst@decimalsseparator% 140\expandafter\physconst@decimalsseparator% 76% \times 10^{23}}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kAvogadro} % |\kAvogadro| is Avogadro's Number (the number of particles in a mole). % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kAvogadro}{% \k@full@Avogadro} \else \DeclareRobustCommand {\kAvogadro}{% \k@short@Avogadro} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@short@AvogadroNumeric} % |\k@short@AvogadroNumeric| is Avogadro's Number (the number of particles in a mole) % with reduced precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@short@AvogadroNumeric}{% \ensuremath{% 6.02e+23}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\k@full@AvogadroNumeric} % |\k@full@AvogadroNumeric| is Avogadro's Number (the number of particles in a mole) % with full precision. % Source: CODATA~2018 % % \begin{macrocode} \DeclareRobustCommand{\k@full@AvogadroNumeric}{% \ensuremath{% 6.02214076e+23}} % \end{macrocode} % \end{macro} % %\iffalse % %\fi %\iffalse %<*package> %\fi % \begin{macro}{\kAvogadroNumeric} % |\kAvogadroNumeric| is Avogadro's Number (the number of particles in a mole). % % \begin{macrocode} \ifx\shortconst\undefined \DeclareRobustCommand {\kAvogadroNumeric}{% \k@full@AvogadroNumeric} \else \DeclareRobustCommand {\kAvogadroNumeric}{% \k@short@AvogadroNumeric} \fi % \end{macrocode} % \end{macro} % %\iffalse % %\fi % \CheckSum{0} % \Finale \makeatother