
The trace package∗

Frank Mittelbach
LaTeX3 project

frank.mittelbach@latex-project.org

2003/04/30

1 Introduction

When writing new macros one often finds that they do not work as expected (at
least I do :-). If this happens and one can’t immediately figure out why there is
a problem one has to start doing some serious debugging. TeX offers a lot of
bells and whistles to control what is being traced but often enough I find myself
applying the crude command\tracingall which essentially means “give me
whatever tracing information is available”.

In fact I normally useε-TeX in such a case, since that TeX extension of-
fers me a number of additional tracing possibilities which I find extremely help-
ful. The most important ones are\tracingassigns, which will show you
changes to register values and changes to control sequences when they happen,
and\tracinggroups, which will tell you what groups are entered or left (very
useful if your grouping got out of sync).

So what I really write is

\tracingassigns=1\tracinggroups=1\tracingall

That in itself is already a nuisance (since it is a mouthful) but there is a worse
catch: when using\tracingall you do get a awful lot of information and some
of it is really useless.

For example, if LaTeX has to load a new font it enters some internal routines
of NFSS which scan font definition tables etc. And 99.9% of the time you are not
at all interested in that part of the processing but in the two lines before and the
five lines after. However, you have to scan through a few hundred lines of output
to find the lines you need.

Another example is thecalc package. A simple statement like\setlength
\linewidth {1cm} inside your macro will result in

\setlength ->\protect \setlength

{\relax}

\setlength ->\calc@assign@skip

\calc@assign@skip ->\calc@assign@generic \calc@Askip \calc@Bskip

\calc@assign@generic #1#2#3#4->\let \calc@A #1\let \calc@B #2\expandafter \calc

∗This file has version number v1.1c, last revised 2003/04/30.

1

@open \expandafter (#4!\global \calc@A \calc@B \endgroup #3\calc@B

#1<-\calc@Askip

#2<-\calc@Bskip

#3<-\linewidth

#4<-1cm

{\let}

{\let}

{\expandafter}

{\expandafter}

\calc@open (->\begingroup \aftergroup \calc@initB \begingroup \aftergroup \calc

@initB \calc@pre@scan

{\begingroup}

{\aftergroup}

{\begingroup}

{\aftergroup}

\calc@pre@scan #1->\ifx (#1\expandafter \calc@open \else \ifx \widthof #1\expan

dafter \expandafter \expandafter \calc@textsize \else \calc@numeric \fi \fi #1

#1<-1

{\ifx}

{false}

{\ifx}

{false}

\calc@numeric ->\afterassignment \calc@post@scan \global \calc@A

{\afterassignment}

{\global}

{\fi}

{\fi}

\calc@post@scan #1->\ifx #1!\let \calc@next \endgroup \else \ifx #1+\let \calc@

next \calc@add \else \ifx #1-\let \calc@next \calc@subtract \else \ifx #1*\let

\calc@next \calc@multiplyx \else \ifx #1/\let \calc@next \calc@dividex \else \i

fx #1)\let \calc@next \calc@close \else \calc@error #1\fi \fi \fi \fi \fi \fi \

calc@next

#1<-!

{\ifx}

{true}

{\let}

{\else}

{\endgroup}

{restoring \calc@next=undefined}

\calc@initB ->\calc@B \calc@A

{\skip44}

{\global}

{\endgroup}

{restoring \skip44=0.0pt}

\calc@initB ->\calc@B \calc@A

{\skip44}

{\dimen27}

Do you still remember what I was talking about?
No? We’re trying to find a problem in macro code without having to scan too

many uninteresting lines. To make this possible we have to redefine a number
of key commands to turn tracing off temporarily in the hope that this will reduce
the amount of noise during the trace. For example, if we change one of thecalc

2

internals slightly, the above tracing output can be reduced to:

\setlength ->\protect \setlength

{\relax}

\setlength ->\calc@assign@skip

\calc@assign@skip ->\calc@assign@generic \calc@Askip \calc@Bskip

\calc@assign@generic #1#2#3#4->\let \calc@A #1\let \calc@B #2\expandafter \calc

@open \expandafter (#4!\global \calc@A \calc@B \endgroup #3\calc@B

#1<-\calc@Askip

#2<-\calc@Bskip

#3<-\linewidth

#4<-1cm

{\let}

{\let}

{\expandafter}

{\expandafter}

\calc@open (->\begingroup \conditionally@traceoff \aftergroup \calc@initB \begi

ngroup \aftergroup \calc@initB \calc@pre@scan

{\begingroup}

\conditionally@traceoff ->\tracingrestores \z@ \tracingcommands \z@ \tracingpag

es \z@ \tracingmacros \z@ \tracingparagraphs \z@

{\tracingrestores}

{\tracingcommands}

{restoring \tracingrestores=1}

\calc@initB ->\calc@B \calc@A

{\skip44}

{\dimen27}

Still a lot of noise but definitely preferable to the original case.
I redefined those internals that I found most annoyingly noisy. There are

probably many others that could be treated in a similar fashion, so if you think
you found one worth adding please drop me a short note.

∗ ∗ ∗

The package defines the two macros\traceon and\traceoff to uncon-\traceon

\traceoff ditionally turn tracing on or off, respectively.\traceon is like \tracingall
but additionally adds\tracingassigns and\tracinggroups if the ε-TeX pro-
gram (in extended mode) is used. And\traceoff will turn tracing off again,
a command which is already badly missing in plain TeX, since it is often not
desirable to restrict the tracing using extra groups in the document.

There are also two internal macros that turn tracing on and off, but only if the\conditionally@traceon

\conditionally@traceoff user requested tracing in the first place. These are the ones that are used internally
within the code below.

Since the package overwrites some internals of other packages you should
load it as the last package in your preamble using\usepackage{trace}.

The package offers the optionlogonly that suppresses terminal output during
tracing (unless\tracingall is used). This is useful if the TeX implementation
used gets rather slow when writing a lot of information to the terminal.

It also offers the optionfull in which case\traceon will trace all parts of
the code, i.e., essentially work like\tracingall.

3

2 A sample file

The following small test file shows the benefits of thetrace package. If one
uncomments the line loading the package, the amount of tracing data will be
drastically reduced. Without thetrace package we get 6594 lines in the log
file; adding the package will reduce this to 1618 lines.

\documentclass{article}

\usepackage{calc}

%\usepackage{trace} % uncomment to see difference

\begin{document}

\ifx\traceon\undefined \tracingall \else \traceon \fi

\setlength\linewidth{1cm}

$foo=\bar a$

\small \texttt{\$} \stop

4

