% equivalents.w % % Copyright 2009-2010 Taco Hoekwater % This file is part of LuaTeX. % LuaTeX is free software; you can redistribute it and/or modify it under % the terms of the GNU General Public License as published by the Free % Software Foundation; either version 2 of the License, or (at your % option) any later version. % LuaTeX is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or % FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public % License for more details. % You should have received a copy of the GNU General Public License along % with LuaTeX; if not, see . @ @c #include "ptexlib.h" static const char _svn_version[] = "$Id: equivalents.w 3849 2010-09-01 09:10:48Z taco $" "$URL: http://foundry.supelec.fr/svn/luatex/tags/beta-0.70.1/source/texk/web2c/luatexdir/tex/equivalents.w $"; @ @c #define par_shape_ptr equiv(par_shape_loc) void show_eqtb_meaning(halfword n); /* forward */ @ Now that we have studied the data structures for \TeX's semantic routines, we ought to consider the data structures used by its syntactic routines. In other words, our next concern will be the tables that \TeX\ looks at when it is scanning what the user has written. The biggest and most important such table is called |eqtb|. It holds the current ``equivalents'' of things; i.e., it explains what things mean or what their current values are, for all quantities that are subject to the nesting structure provided by \TeX's grouping mechanism. There are six parts to |eqtb|: \yskip\hang 1) |eqtb[null_cs]| holds the current equivalent of the zero-length control sequence. \yskip\hang 2) |eqtb[hash_base..(glue_base-1)]| holds the current equivalents of single- and multiletter control sequences. \yskip\hang 3) |eqtb[glue_base..(local_base-1)]| holds the current equivalents of glue parameters like the current baselineskip. \yskip\hang 4) |eqtb[local_base..(int_base-1)]| holds the current equivalents of local halfword quantities like the current box registers, the current ``catcodes,'' the current font, and a pointer to the current paragraph shape. \yskip\hang 5) |eqtb[int_base..(dimen_base-1)]| holds the current equivalents of fullword integer parameters like the current hyphenation penalty. \yskip\hang 6) |eqtb[dimen_base..eqtb_size]| holds the current equivalents of fullword dimension parameters like the current hsize or amount of hanging indentation. \yskip\noindent Note that, for example, the current amount of baselineskip glue is determined by the setting of a particular location in region~3 of |eqtb|, while the current meaning of the control sequence `\.{\\baselineskip}' (which might have been changed by \.{\\def} or \.{\\let}) appears in region~2. @ The last two regions of |eqtb| have fullword values instead of the three fields |eq_level|, |eq_type|, and |equiv|. An |eq_type| is unnecessary, but \TeX\ needs to store the |eq_level| information in another array called |xeq_level|. @c memory_word *eqtb; halfword eqtb_top; /* maximum of the |eqtb| */ quarterword xeq_level[(eqtb_size + 1)]; @ @c void initialize_equivalents(void) { int k; for (k = int_base; k <= eqtb_size; k++) xeq_level[k] = level_one; } @ The nested structure provided by `$\.{\char'173}\ldots\.{\char'175}$' groups in \TeX\ means that |eqtb| entries valid in outer groups should be saved and restored later if they are overridden inside the braces. When a new |eqtb| value is being assigned, the program therefore checks to see if the previous entry belongs to an outer level. In such a case, the old value is placed on the |save_stack| just before the new value enters |eqtb|. At the end of a grouping level, i.e., when the right brace is sensed, the |save_stack| is used to restore the outer values, and the inner ones are destroyed. Entries on the |save_stack| are of type |save_record|. The top item on this stack is |save_stack[p]|, where |p=save_ptr-1|; it contains three fields called |save_type|, |save_level|, and |save_value|, and it is interpreted in one of four ways: \yskip\hang 1) If |save_type(p)=restore_old_value|, then |save_value(p)| is a location in |eqtb| whose current value should be destroyed at the end of the current group and replaced by |save_word(p-1)| (|save_type(p-1)==saved_eqtb|). Furthermore if |save_value(p)>=int_base|, then |save_level(p)| should replace the corresponding entry in |xeq_level| (if |save_value(p)max_save_stack) { \ max_save_stack=save_ptr; \ if (max_save_stack>save_size-8) \ overflow("save size",(unsigned)save_size); \ } \ } while (0) @ Procedure |new_save_level| is called when a group begins. The argument is a group identification code like `|hbox_group|'. After calling this routine, it is safe to put six more entries on |save_stack|. In some cases integer-valued items are placed onto the |save_stack| just below a |level_boundary| word, because this is a convenient place to keep information that is supposed to ``pop up'' just when the group has finished. For example, when `\.{\\hbox to 100pt}' is being treated, the 100pt dimension is stored on |save_stack| just before |new_save_level| is called. @c void new_save_level(group_code c) { /* begin a new level of grouping */ check_full_save_stack(); set_saved_record(0, saved_line, 0, line); incr(save_ptr); save_type(save_ptr) = level_boundary; save_level(save_ptr) = cur_group; save_value(save_ptr) = cur_boundary; if (cur_level == max_quarterword) overflow("grouping levels", max_quarterword - min_quarterword); /* quit if |(cur_level+1)| is too big to be stored in |eqtb| */ cur_boundary = save_ptr; cur_group = c; if (int_par(tracing_groups_code) > 0) group_trace(false); incr(cur_level); incr(save_ptr); } @ @c static const char *save_stack_type(int v) { const char *s = ""; switch (save_type(v)) { /* *INDENT-OFF* */ case restore_old_value: s = "restore_old_value"; break; case restore_zero: s = "restore_zero"; break; case insert_token: s = "insert_token"; break; case level_boundary: s = "level_boundary"; break; case saved_line: s = "saved_line"; break; case saved_adjust: s = "saved_adjust"; break; case saved_insert: s = "saved_insert"; break; case saved_disc: s = "saved_disc"; break; case saved_boxtype: s = "saved_boxtype"; break; case saved_textdir: s = "saved_textdir"; break; case saved_eqno: s = "saved_eqno"; break; case saved_choices: s = "saved_choices"; break; case saved_math: s = "saved_math"; break; case saved_boxcontext: s = "saved_boxcontext"; break; case saved_boxspec: s = "saved_boxspec"; break; case saved_boxdir: s = "saved_boxdir"; break; case saved_boxattr: s = "saved_boxattr"; break; case saved_eqtb: s = "saved_eqtb"; break; default: break; /* *INDENT-ON* */ } return s; } @ @c void print_save_stack(void) { int i; begin_diagnostic(); selector = term_and_log; print_ln(); for (i = (save_ptr - 1); i >= 0; i--) { tprint("save_stack["); if (i < 100) print_char(' '); if (i < 10) print_char(' '); print_int(i); tprint("]: "); tprint(save_stack_type(i)); switch (save_type(i)) { case restore_old_value: tprint(", "); show_eqtb_meaning(save_value(i)); tprint("="); if (save_value(i) >= int_base) { print_int(save_word(i - 1).cint); } else { print_int(eq_type_field(save_word(i - 1))); print_char(','); /* |print_int(eq_level_field(save_word(i-1)));| */ print_int(equiv_field(save_word(i - 1))); } i--; break; case restore_zero: tprint(", "); show_eqtb_meaning(save_value(i)); break; case insert_token: tprint(", "); { halfword p = get_avail(); set_token_info(p, save_value(i)); show_token_list(p, null, 1); free_avail(p); } break; case level_boundary: tprint(", old group="); print_int(save_level(i)); tprint(", boundary = "); print_int(save_value(i)); tprint(", line = "); print_int(save_value(i - 1)); i--; break; case saved_adjust: tprint(", "); print_int(save_level(i)); /* vadjust vs vadjust pre */ break; case saved_insert: tprint(", "); print_int(save_value(i)); /* insert number */ break; case saved_boxtype: /* \.{\\localleftbox} vs \.{\\localrightbox} */ tprint(", "); print_int(save_value(i)); break; case saved_eqno: /* \.{\\eqno} vs \.{\\leqno} */ tprint(", "); print_int(save_value(i)); break; case saved_disc: case saved_choices: tprint(", "); print_int(save_value(i)); break; case saved_math: tprint(", listptr="); print_int(save_value(i)); break; case saved_boxcontext: tprint(", "); print_int(save_value(i)); break; case saved_boxspec: tprint(", spec="); print_int(save_level(i)); tprint(", dimen="); print_int(save_value(i)); break; case saved_textdir: case saved_boxdir: tprint(", "); print_dir(dir_dir(save_value(i))); break; case saved_boxattr: tprint(", "); print_int(save_value(i)); break; case saved_line: case saved_eqtb: break; default: break; } print_ln(); } end_diagnostic(true); } @ The \.{\\showgroups} command displays all currently active grouping levels. @ The modifications of \TeX\ required for the display produced by the |show_save_groups| procedure were first discussed by Donald~E. Knuth in {\sl TUGboat\/} {\bf 11}, 165--170 and 499--511, 1990. @^Knuth, Donald Ervin@> In order to understand a group type we also have to know its mode. Since unrestricted horizontal modes are not associated with grouping, they are skipped when traversing the semantic nest. @c void show_save_groups(void) { int p; /* index into |nest| */ int m; /* mode */ save_pointer v; /* saved value of |save_ptr| */ quarterword l; /* saved value of |cur_level| */ group_code c; /* saved value of |cur_group| */ int a; /* to keep track of alignments */ int i; quarterword j; const char *s; #ifdef DEBUG print_save_stack(); #endif p = nest_ptr; v = save_ptr; l = cur_level; c = cur_group; save_ptr = cur_boundary; decr(cur_level); a = 1; s = NULL; tprint_nl(""); print_ln(); while (1) { tprint_nl("### "); print_group(true); if (cur_group == bottom_level) goto DONE; do { m = nest[p].mode_field; if (p > 0) decr(p); else m = vmode; } while (m == hmode); tprint(" ("); switch (cur_group) { case simple_group: incr(p); goto FOUND2; break; case hbox_group: case adjusted_hbox_group: s = "hbox"; break; case vbox_group: s = "vbox"; break; case vtop_group: s = "vtop"; break; case align_group: if (a == 0) { if (m == -vmode) s = "halign"; else s = "valign"; a = 1; goto FOUND1; } else { if (a == 1) tprint("align entry"); else tprint_esc("cr"); if (p >= a) p = p - a; a = 0; goto FOUND; } break; case no_align_group: incr(p); a = -1; tprint_esc("noalign"); goto FOUND2; break; case output_group: tprint_esc("output"); goto FOUND; break; case math_group: goto FOUND2; break; case disc_group: tprint_esc("discretionary"); for (i = 1; i < 3; i++) if (i <= saved_value(-2)) tprint("{}"); goto FOUND2; break; case math_choice_group: tprint_esc("mathchoice"); for (i = 1; i < 4; i++) if (i <= saved_value(-3)) /* different offset because |-2==saved_textdir| */ tprint("{}"); goto FOUND2; break; case insert_group: if (saved_type(-1) == saved_adjust) { tprint_esc("vadjust"); if (saved_level(-1) != 0) tprint(" pre"); } else { tprint_esc("insert"); print_int(saved_value(-1)); } goto FOUND2; break; case vcenter_group: s = "vcenter"; goto FOUND1; break; case semi_simple_group: incr(p); tprint_esc("begingroup"); goto FOUND; break; case math_shift_group: if (m == mmode) { print_char('$'); } else if (nest[p].mode_field == mmode) { print_cmd_chr(eq_no_cmd, saved_value(-2)); goto FOUND; } print_char('$'); goto FOUND; break; case math_left_group: if (subtype(nest[p + 1].eTeX_aux_field) == left_noad_side) tprint_esc("left"); else tprint_esc("middle"); goto FOUND; break; default: confusion("showgroups"); break; } /* Show the box context */ i = saved_value(-5); if (i != 0) { if (i < box_flag) { if (abs(nest[p].mode_field) == vmode) j = hmove_cmd; else j = vmove_cmd; if (i > 0) print_cmd_chr(j, 0); else print_cmd_chr(j, 1); print_scaled(abs(i)); tprint("pt"); } else if (i < ship_out_flag) { if (i >= global_box_flag) { tprint_esc("global"); i = i - (global_box_flag - box_flag); } tprint_esc("setbox"); print_int(i - box_flag); print_char('='); } else { print_cmd_chr(leader_ship_cmd, i - (leader_flag - a_leaders)); } } FOUND1: tprint_esc(s); /* Show the box packaging info */ { /* offsets may vary */ int ii = -1; while (saved_type(ii) != saved_boxspec) ii--; if (saved_value(ii) != 0) { print_char(' '); if (saved_level(ii) == exactly) tprint("to"); else tprint("spread"); print_scaled(saved_value(ii)); tprint("pt"); } } FOUND2: print_char('{'); FOUND: print_char(')'); decr(cur_level); cur_group = save_level(save_ptr); save_ptr = save_value(save_ptr); } DONE: save_ptr = v; cur_level = l; cur_group = c; } @ Just before an entry of |eqtb| is changed, the following procedure should be called to update the other data structures properly. It is important to keep in mind that reference counts in |mem| include references from within |save_stack|, so these counts must be handled carefully. @^reference counts@> @c void eq_destroy(memory_word w) { /* gets ready to forget |w| */ halfword q; /* |equiv| field of |w| */ switch (eq_type_field(w)) { case call_cmd: case long_call_cmd: case outer_call_cmd: case long_outer_call_cmd: delete_token_ref(equiv_field(w)); break; case glue_ref_cmd: delete_glue_ref(equiv_field(w)); break; case shape_ref_cmd: q = equiv_field(w); /* we need to free a \.{\\parshape} block */ if (q != null) flush_node(q); break; /* such a block is |2n+1| words long, where |n=vinfo(q)| */ case box_ref_cmd: flush_node_list(equiv_field(w)); break; default: break; } } @ To save a value of |eqtb[p]| that was established at level |l|, we can use the following subroutine. @c void eq_save(halfword p, quarterword l) { /* saves |eqtb[p]| */ check_full_save_stack(); if (l == level_zero) { save_type(save_ptr) = restore_zero; } else { save_word(save_ptr) = eqtb[p]; save_type(save_ptr) = saved_eqtb; incr(save_ptr); save_type(save_ptr) = restore_old_value; } save_level(save_ptr) = l; save_value(save_ptr) = p; incr(save_ptr); } @ The procedure |eq_define| defines an |eqtb| entry having specified |eq_type| and |equiv| fields, and saves the former value if appropriate. This procedure is used only for entries in the first four regions of |eqtb|, i.e., only for entries that have |eq_type| and |equiv| fields. After calling this routine, it is safe to put four more entries on |save_stack|, provided that there was room for four more entries before the call, since |eq_save| makes the necessary test. @c void eq_define(halfword p, quarterword t, halfword e) { /* new data for |eqtb| */ if ((eq_type(p) == t) && (equiv(p) == e)) { assign_trace(p, "reassigning"); eq_destroy(eqtb[p]); return; } assign_trace(p, "changing"); if (eq_level(p) == cur_level) eq_destroy(eqtb[p]); else if (cur_level > level_one) eq_save(p, eq_level(p)); set_eq_level(p, cur_level); set_eq_type(p, t); set_equiv(p, e); assign_trace(p, "into"); } @ The counterpart of |eq_define| for the remaining (fullword) positions in |eqtb| is called |eq_word_define|. Since |xeq_level[p]>=level_one| for all |p|, a `|restore_zero|' will never be used in this case. @c void eq_word_define(halfword p, int w) { if (eqtb[p].cint == w) { assign_trace(p, "reassigning"); return; } assign_trace(p, "changing"); if (xeq_level[p] != cur_level) { eq_save(p, xeq_level[p]); xeq_level[p] = cur_level; } eqtb[p].cint = w; assign_trace(p, "into"); } @ The |eq_define| and |eq_word_define| routines take care of local definitions. @^global definitions@> Global definitions are done in almost the same way, but there is no need to save old values, and the new value is associated with |level_one|. @c void geq_define(halfword p, quarterword t, halfword e) { /* global |eq_define| */ assign_trace(p, "globally changing"); eq_destroy(eqtb[p]); set_eq_level(p, level_one); set_eq_type(p, t); set_equiv(p, e); assign_trace(p, "into"); } void geq_word_define(halfword p, int w) { /* global |eq_word_define| */ assign_trace(p, "globally changing"); eqtb[p].cint = w; xeq_level[p] = level_one; assign_trace(p, "into"); } @ Subroutine |save_for_after| puts a token on the stack for save-keeping. @c void save_for_after(halfword t) { if (cur_level > level_one) { check_full_save_stack(); save_type(save_ptr) = insert_token; save_level(save_ptr) = level_zero; save_value(save_ptr) = t; incr(save_ptr); } } @ The |unsave| routine goes the other way, taking items off of |save_stack|. This routine takes care of restoration when a level ends; everything belonging to the topmost group is cleared off of the save stack. @c void unsave(void) { /* pops the top level off the save stack */ halfword p; /* position to be restored */ quarterword l; /* saved level, if in fullword regions of |eqtb| */ boolean a; /* have we already processed an \.{\\aftergroup} ? */ a = false; l = level_one; /* just in case */ unsave_math_codes(cur_level); unsave_cat_codes(int_par(cat_code_table_code), cur_level); unsave_text_codes(cur_level); unsave_math_data(cur_level); if (cur_level > level_one) { decr(cur_level); /* Clear off top level from |save_stack| */ while (true) { decr(save_ptr); if (save_type(save_ptr) == level_boundary) break; p = save_value(save_ptr); if (save_type(save_ptr) == insert_token) { a = reinsert_token(a, p); } else { if (save_type(save_ptr) == restore_old_value) { l = save_level(save_ptr); decr(save_ptr); } else { save_word(save_ptr) = eqtb[undefined_control_sequence]; } /* Store |save_stack[save_ptr]| in |eqtb[p]|, unless |eqtb[p]| holds a global value */ /* A global definition, which sets the level to |level_one|, will not be undone by |unsave|. If at least one global definition of |eqtb[p]| has been carried out within the group that just ended, the last such definition will therefore survive. */ if (p < int_base || p > eqtb_size) { if (eq_level(p) == level_one) { eq_destroy(save_word(save_ptr)); /* destroy the saved value */ if (int_par(tracing_restores_code) > 0) restore_trace(p, "retaining"); } else { eq_destroy(eqtb[p]); /* destroy the current value */ eqtb[p] = save_word(save_ptr); /* restore the saved value */ if (int_par(tracing_restores_code) > 0) restore_trace(p, "restoring"); } } else if (xeq_level[p] != level_one) { eqtb[p] = save_word(save_ptr); xeq_level[p] = l; if (int_par(tracing_restores_code) > 0) restore_trace(p, "restoring"); } else { if (int_par(tracing_restores_code) > 0) restore_trace(p, "retaining"); } } } if (int_par(tracing_groups_code) > 0) group_trace(true); if (grp_stack[in_open] == cur_boundary) group_warning(); /* groups possibly not properly nested with files */ cur_group = save_level(save_ptr); cur_boundary = save_value(save_ptr); decr(save_ptr); } else { confusion("curlevel"); /* |unsave| is not used when |cur_group=bottom_level| */ } attr_list_cache = cache_disabled; } @ @c void restore_trace(halfword p, const char *s) { /* |eqtb[p]| has just been restored or retained */ begin_diagnostic(); print_char('{'); tprint(s); print_char(' '); show_eqtb(p); print_char('}'); end_diagnostic(false); } @ Most of the parameters kept in |eqtb| can be changed freely, but there's an exception: The magnification should not be used with two different values during any \TeX\ job, since a single magnification is applied to an entire run. The global variable |mag_set| is set to the current magnification whenever it becomes necessary to ``freeze'' it at a particular value. @c int mag_set; /* if nonzero, this magnification should be used henceforth */ @ The |prepare_mag| subroutine is called whenever \TeX\ wants to use |mag| for magnification. @c #define mag int_par(mag_code) void prepare_mag(void) { if ((mag_set > 0) && (mag != mag_set)) { print_err("Incompatible magnification ("); print_int(mag); tprint(");"); tprint_nl(" the previous value will be retained"); help2("I can handle only one magnification ratio per job. So I've", "reverted to the magnification you used earlier on this run."); int_error(mag_set); geq_word_define(int_base + mag_code, mag_set); /* |mag:=mag_set| */ } if ((mag <= 0) || (mag > 32768)) { print_err("Illegal magnification has been changed to 1000"); help1("The magnification ratio must be between 1 and 32768."); int_error(mag); geq_word_define(int_base + mag_code, 1000); } if ((mag_set == 0) && (mag != mag_set)) { if (mag != 1000) one_true_inch = xn_over_d(one_hundred_inch, 10, mag); else one_true_inch = one_inch; } mag_set = mag; } @ Let's pause a moment now and try to look at the Big Picture. The \TeX\ program consists of three main parts: syntactic routines, semantic routines, and output routines. The chief purpose of the syntactic routines is to deliver the user's input to the semantic routines, one token at a time. The semantic routines act as an interpreter responding to these tokens, which may be regarded as commands. And the output routines are periodically called on to convert box-and-glue lists into a compact set of instructions that will be sent to a typesetter. We have discussed the basic data structures and utility routines of \TeX, so we are good and ready to plunge into the real activity by considering the syntactic routines. Our current goal is to come to grips with the |get_next| procedure, which is the keystone of \TeX's input mechanism. Each call of |get_next| sets the value of three variables |cur_cmd|, |cur_chr|, and |cur_cs|, representing the next input token. $$\vbox{\halign{#\hfil\cr \hbox{|cur_cmd| denotes a command code from the long list of codes given above;}\cr \hbox{|cur_chr| denotes a character code or other modifier of the command code;}\cr \hbox{|cur_cs| is the |eqtb| location of the current control sequence,}\cr \hbox{\qquad if the current token was a control sequence, otherwise it's zero.}\cr}}$$ Underlying this external behavior of |get_next| is all the machinery necessary to convert from character files to tokens. At a given time we may be only partially finished with the reading of several files (for which \.{\\input} was specified), and partially finished with the expansion of some user-defined macros and/or some macro parameters, and partially finished with the generation of some text in a template for \.{\\halign}, and so on. When reading a character file, special characters must be classified as math delimiters, etc.; comments and extra blank spaces must be removed, paragraphs must be recognized, and control sequences must be found in the hash table. Furthermore there are occasions in which the scanning routines have looked ahead for a word like `\.{plus}' but only part of that word was found, hence a few characters must be put back into the input and scanned again. To handle these situations, which might all be present simultaneously, \TeX\ uses various stacks that hold information about the incomplete activities, and there is a finite state control for each level of the input mechanism. These stacks record the current state of an implicitly recursive process, but the |get_next| procedure is not recursive. Therefore it will not be difficult to translate these algorithms into low-level languages that do not support recursion. @c int cur_cmd; /* current command set by |get_next| */ halfword cur_chr; /* operand of current command */ halfword cur_cs; /* control sequence found here, zero if none found */ halfword cur_tok; /* packed representative of |cur_cmd| and |cur_chr| */ @ Here is a procedure that displays the current command. @c #define mode cur_list.mode_field void show_cur_cmd_chr(void) { int n; /* level of \.{\\if...\\fi} nesting */ int l; /* line where \.{\\if} started */ halfword p; begin_diagnostic(); tprint_nl("{"); if (mode != shown_mode) { print_mode(mode); tprint(": "); shown_mode = mode; } print_cmd_chr((quarterword) cur_cmd, cur_chr); if (int_par(tracing_ifs_code) > 0) { if (cur_cmd >= if_test_cmd) { if (cur_cmd <= fi_or_else_cmd) { tprint(": "); if (cur_cmd == fi_or_else_cmd) { print_cmd_chr(if_test_cmd, cur_if); print_char(' '); n = 0; l = if_line; } else { n = 1; l = line; } p = cond_ptr; while (p != null) { incr(n); p = vlink(p); } tprint("(level "); print_int(n); print_char(')'); print_if_line(l); } } } print_char('}'); end_diagnostic(false); } @ Here is a procedure that displays the contents of |eqtb[n]| symbolically. @c void show_eqtb(halfword n) { if (n < null_cs) { print_char('?'); /* this can't happen */ } else if ((n < glue_base) || ((n > eqtb_size) && (n <= eqtb_top))) { /* Show equivalent |n|, in region 1 or 2 */ /* Here is a routine that displays the current meaning of an |eqtb| entry in region 1 or~2. (Similar routines for the other regions will appear below.) */ sprint_cs(n); print_char('='); print_cmd_chr(eq_type(n), equiv(n)); if (eq_type(n) >= call_cmd) { print_char(':'); show_token_list(token_link(equiv(n)), null, 32); } } else if (n < local_base) { /* Show equivalent |n|, in region 3 */ /* All glue parameters and registers are initially `\.{0pt plus0pt minus0pt}'. */ if (n < skip_base) { if (n < glue_base + thin_mu_skip_code) print_cmd_chr(assign_glue_cmd, n); else print_cmd_chr(assign_mu_glue_cmd, n); print_char('='); if (n < glue_base + thin_mu_skip_code) print_spec(equiv(n), "pt"); else print_spec(equiv(n), "mu"); } else if (n < mu_skip_base) { tprint_esc("skip"); print_int(n - skip_base); print_char('='); print_spec(equiv(n), "pt"); } else { tprint_esc("muskip"); print_int(n - mu_skip_base); print_char('='); print_spec(equiv(n), "mu"); } } else if (n < int_base) { /* Show equivalent |n|, in region 4 */ /* We initialize most things to null or undefined values. An undefined font is represented by the internal code |font_base|. However, the character code tables are given initial values based on the conventional interpretation of ASCII code. These initial values should not be changed when \TeX\ is adapted for use with non-English languages; all changes to the initialization conventions should be made in format packages, not in \TeX\ itself, so that global interchange of formats is possible. */ if ((n == par_shape_loc) || ((n >= etex_pen_base) && (n < etex_pens))) { if (n == par_shape_loc) print_cmd_chr(set_tex_shape_cmd, n); else print_cmd_chr(set_etex_shape_cmd, n); print_char('='); if (equiv(n) == null) { print_char('0'); } else if (n > par_shape_loc) { print_int(penalty(equiv(n))); print_char(' '); print_int(penalty(equiv(n) + 1)); if (penalty(equiv(n)) > 1) tprint_esc("ETC."); } else { print_int(vinfo(par_shape_ptr + 1)); } } else if (n < toks_base) { print_cmd_chr(assign_toks_cmd, n); print_char('='); if (equiv(n) != null) show_token_list(token_link(equiv(n)), null, 32); } else if (n < box_base) { tprint_esc("toks"); print_int(n - toks_base); print_char('='); if (equiv(n) != null) show_token_list(token_link(equiv(n)), null, 32); } else if (n < cur_font_loc) { tprint_esc("box"); print_int(n - box_base); print_char('='); if (equiv(n) == null) { tprint("void"); } else { depth_threshold = 0; breadth_max = 1; show_node_list(equiv(n)); } } else if (n == cur_font_loc) { /* Show the font identifier in |eqtb[n]| */ tprint("current font"); print_char('='); print_esc(hash[font_id_base + equiv(n)].rh); /* that's |font_id_text(equiv(n))| */ } } else if (n < dimen_base) { /* Show equivalent |n|, in region 5 */ if (n < dir_base) { print_cmd_chr(assign_int_cmd, n); print_char('='); print_int(eqtb[n].cint); } else if (n < count_base) { print_cmd_chr(assign_dir_cmd, n); print_char(' '); print_dir(eqtb[n].cint); } else if (n < attribute_base) { tprint_esc("count"); print_int(n - count_base); print_char('='); print_int(eqtb[n].cint); } else if (n < del_code_base) { tprint_esc("attribute"); print_int(n - attribute_base); print_char('='); print_int(eqtb[n].cint); } } else if (n <= eqtb_size) { /* Show equivalent |n|, in region 6 */ if (n < scaled_base) { print_cmd_chr(assign_dimen_cmd, n); } else { tprint_esc("dimen"); print_int(n - scaled_base); } print_char('='); print_scaled(eqtb[n].cint); tprint("pt"); } else { print_char('?'); /* this can't happen either */ } } @ @c void show_eqtb_meaning(halfword n) { if (n < null_cs) { print_char('?'); /* this can't happen */ } else if ((n < glue_base) || ((n > eqtb_size) && (n <= eqtb_top))) { /* Show equivalent |n|, in region 1 or 2 */ /* Here is a routine that displays the current meaning of an |eqtb| entry in region 1 or~2. (Similar routines for the other regions will appear below.) */ sprint_cs(n); } else if (n < local_base) { /* Show equivalent |n|, in region 3 */ /* All glue parameters and registers are initially `\.{0pt plus0pt minus0pt}'. */ if (n < skip_base) { if (n < glue_base + thin_mu_skip_code) print_cmd_chr(assign_glue_cmd, n); else print_cmd_chr(assign_mu_glue_cmd, n); } else if (n < mu_skip_base) { tprint_esc("skip"); print_int(n - skip_base); } else { tprint_esc("muskip"); print_int(n - mu_skip_base); } } else if (n < int_base) { /* Show equivalent |n|, in region 4 */ /* We initialize most things to null or undefined values. An undefined font is represented by the internal code |font_base|. However, the character code tables are given initial values based on the conventional interpretation of ASCII code. These initial values should not be changed when \TeX\ is adapted for use with non-English languages; all changes to the initialization conventions should be made in format packages, not in \TeX\ itself, so that global interchange of formats is possible. */ if ((n == par_shape_loc) || ((n >= etex_pen_base) && (n < etex_pens))) { if (n == par_shape_loc) print_cmd_chr(set_tex_shape_cmd, n); else print_cmd_chr(set_etex_shape_cmd, n); } else if (n < toks_base) { print_cmd_chr(assign_toks_cmd, n); } else if (n < box_base) { tprint_esc("toks"); print_int(n - toks_base); } else if (n < cur_font_loc) { tprint_esc("box"); print_int(n - box_base); } else if (n == cur_font_loc) { /* Show the font identifier in |eqtb[n]| */ tprint("current font"); } } else if (n < dimen_base) { /* Show equivalent |n|, in region 5 */ if (n < dir_base) { print_cmd_chr(assign_int_cmd, n); } else if (n < count_base) { print_cmd_chr(assign_dir_cmd, n); } else if (n < attribute_base) { tprint_esc("count"); print_int(n - count_base); } else if (n < del_code_base) { tprint_esc("attribute"); print_int(n - attribute_base); } } else if (n <= eqtb_size) { /* Show equivalent |n|, in region 6 */ if (n < scaled_base) { print_cmd_chr(assign_dimen_cmd, n); } else { tprint_esc("dimen"); print_int(n - scaled_base); } } else { print_char('?'); /* this can't happen either */ } }