
view_print_ps_pdf/vpp
#!/bin/bash

shopt -s extglob
Version=3.07
Myname="${0##*/}"

<<'DOC'
= vpp - View and (selectively) Print PDF and PostScript

= Synopsis
vpp [options] [file]	

Options:
-h,--help		print a help message and exit
-H,--Help		print print full documentation via less and exit
-V,--version		print version and exit
-b,--batch=STRING	run in batch after running commands in STRING
 --view		view the document (this is the default)
 --noview		do not view the document
 --viewer=KEY		use pdf viewer named KEY
 --print		offer printing interaction (this is the default)
 --noprint		do not offer printing interaction
-p,--printer=KEY	print to printer named KEY
-v,--verbose		be verbose
 --noverbose		don’t be verbose (this is the default)
-r,--rc[=STRING]	use STRING as an rc file; if STRING is absent,
			don’t read any rc file

Arguments for short options are given without a separator, so you can write
either |--rc=myrc| or |-rmyrc|.

= Description
vpp is a Bash script that displays a PDF or PostScript document (after
conversion to PDF). The user can use the viewer to print the document or,
alternatively, leave the viewer and use vpp’s facilities to print selected
pages to a one- or two-sided hardcopy or an A5-booklet: see the section
/Page selection and other commands/ for the details. Instead of printing your
selections, you can also save them into PDF files.

If |file| is specified with a |.ps| or a |.pdf| extension, vpp will simply use
that |file|. Otherwise, vpp will look for |file.pdf|, |file.ps|, and |file|, in
that order, and will use the first existing file. If |file| lacks, standard
input is used.

In any case, the first few characters /in/ the file determine whether it is
treated as a PDF or as a PostScript file.

vpp needs a viewer and a printer; see the section /Printers and viewers/.

= Exit value

vpp has four possible exit values:

0	OK
1	error
2	edit, which is a signal to the calling program that a new
	edit session is at order; this is used by |mk|.
3	re-compile; this is used by |mk|

= Dependencies

kpsewhich	from texlive
pdflatex	from texlive
pdfpages.sty	from texlive
pdfinfo		from poppler-utils
ps2pdf		from ghostscript
texi2dvi	version 1.152 or greater, from texinfo
mktemp		from coreutils
readlink	from coreutils
getopt		from util-linux
lpr		from cups-bsd
lpoptions,lpstat	from cups-client
file,less	
texlog_extract	from texlive

= Printers and viewers
For the operation of vpp, availability of printers and pdf viewers is important.
Therefore, two associative arrays are defined:
printers	an array available printers, where the keys are printer names
		and the values are |true| or |false|, depending on whether the
		printer can print double sided (true) or not (false).
		
viewers		an array of available viewers, where the keys are viewer names
		and the values are the corresponding commands, with arguments if any.

For each array, an index is set: |printer| for the printers array. |viewer| for
the viewers array. |printer| points to the current printer, |viewer| to the
current viewer.

You can inspect the contents of these arrays either with the short help option
(|-h| or |--help|) or, when you are in vpp's command mode, with the |?| command.

The |printers| array is automatically filled, using the |lpstat| and
|lpoptions| commands.

The |viewers| array can be set in several ways:

- It is initially set to:

 viewers=([xp]=xpdf [ev]=evince [gv]=gv [ac]=acroread)

 but after that, unavailable viewers are silently removed. This may result in
 an empty list.

- After this, an rc file may be available, either in the form of |~/.vpprc| or specified
 with the |--rc| option.

- the |--viewer| option may specify a viewer.

- Finally, a viewer may be specified on-the-fly, with the |v| command (see the
 section on /Page selection and other commands/.

= Options

vpp comes with several options. Before evaluating any options, vpp will try to
read the user rc-file, |~/.vpprc|, where you can set defaults for most options,
by assigning values to variable named after the long form of the options. For
example, there are three ways to select the printer named /k550/:

- use the option |--printer=k550|.
- enter a line with |printer=k550| in your rc file (|~/.vpprc|, for example).
- in command mode, enter |pk550|.

These are the variables that can be set in |~/.vpprc|:
batch		(string) sets the |--batch| option
print		(true or false) sets printing interaction on or off
printer		(string) sets the |--printer| option
verbose		(true or false) sets the |--verbose| option
view		(true or false) sets viewing on or off
viewer		(string) set the viewer; arguments may be added; example:
	
		 viewer='acroread -geometry 1450x1150+0+0'
	
		You should use a basename here, that is: the name of the viewer
		should contain no slashes, and it should be in your PATH.

--help	
	Prints synopsis and available printers and viewers, then quits.
--Help	
	Prints this documentation, /via/ less.
--version	
	Prints version, then quits.
--verbose	
	Prints messages about the progress vpp is making. Can be reverted
	with |--noverbose|.
--rc=rc-file	
	Read the specified |rc-file|, instead of the default rc-file, |~/.vpprc|.
	If this option is used, it must be used before any other options.
	If |rc-file| is an empty string, no rc-file will be read, thus skipping
	reading of |~/.vpprc|.
--batch=string	
	Prevents the --print option to interrogate the user about pages to
	be printed. Instead the document is printed according to the commands
	in the mandatory |string|. Also sets viewing off. Thus the command
	
	 vpp --batch '2-3 x3' test.pdf
	
	prints 3 copies of pages 2 and 3 of |test.pdf| without interaction
--print	
	Present the print prompt. This is the default. Can be reverted with
	|--noprint|, normally used to suppress the print prompt, for
	example when using vpp from other scripts that generate PDF or
	PostScript documents that have only to be displayed or printed
	without even being displayed.
--view	
	Run the file viewer. This is the default. Can be reverted with
	|--noview|, normally used to suppress starting the viewer, for
	example when using vpp from other scripts that generate PDF or
	PostScript documents that have only to be printed.
--printer=key	
	Specifies the printer to be used instead of the system default
	printer. See the section /Printers and viewers/ for more information.
--viewer=[key|command]	
	Specifies the viewer to use. This script defines an associative
	array |viewers| containing 4 viewers as follows:
	
	 viewers=([xp]=xpdf [ev]=evince [gv]=gv [ac]=acroread)
	
	and the viewer is set to xp by default. However, you can define
	your own set of viewers in the |~/.vpprc| file or in any rc file
	given with the |--rc| option. For example:
	 viewers=(
	 [xp]="xpdf -g 970x1050+0+0 -font 8x13bold -z page -cont"
	 [ac]="acroread -geometry 850x890+0+0"
	 [ev]="evince --fullscreen --presentation"
)
	 viewer=xp

= Page selection and other commands

When you select the |--print| option, and you did not also use the |--batch|
option, vpp interrogates you about the pages you want to print. To that end the
following prompt appears:

 vpp command (? for help):

upon typing |?| or |h|, vpp displays examples of possible commands:

 Command Examples:
 5 to print page 5
 5- to print pages 5 through the end
 5-7 to print pages 5, 6 and 7
 7-5 ox write the same pages, in reversed order, to x.pdf
 -7 to print the first 7 pages
 5-7,19- to print pages 5, 6, 7 and 19 through the end
 a to print the whole document
 - to print the whole document
 a x3 to print 3 copies of the document
 x3 the same
 5 x3 to print 3 copies of page 5
 t print the whole document twosided
 t 2- print twosided starting at page 2
 b to print the whole document as an a5 size booklet
 b -12 to print the first 12 pages as an a5 size booklet
 Other commands:
 e (if called by mk) edit the tex source and rerun mk
 c (if called by mk) rerun mk
 v (re)view the ps/pdf file or, with an argument, specify a viewer.
 w list errors and warnings from the log file
 oxyz send pdf output to file xyz.pdf instead of printer
 pxyz print to printer xyz
 h display this help
 ? display this help
 q quit

With these descriptions, no further explanation should be necessary, except for
the following:

When twosided (|t|) or booklet (|b|) printing is selected for a non-duplex
printer, printing will be performed in two shifts, one for the front side and
one for the backside. Between the shifts, another prompt appears:

 printer ready? then turn stack and type return

You will have to arrange your printer such that, with the printed sides up, the
first page printed will be at the bottom of the stack, and the last page printed
will be on top. Normally you will then have your output come out the back of
your printer. /Turn the stack/ then means: rotate it over the long side of the
paper and feed it back into the printer for the other side to be printed.

When you use the |oxyz| subcommand, your selection will not be printed but
instead will be saved in a PDF file named |xyz.pdf|. When you use a |t| or |b|
selection, you will not, of course, be prompted to turn the paper stack.
Instead, the odd and even pages of your selection will be saved in separate PDF
files, |xyz_odd.pdf| and |xyz_even.pdf|.

= Environment
Two environment variables may be useful in scripts using vpp:
VPPOUTDIR	The directory where PDF files generated with the o command will
		be saved; the default is the working directory.
VPPCHECKSAVED	If non-empty, vpp will check on exit that the inspected file
		has been saved into a pdf file and will issue a warning if it hasn’t.

= Examples

Since vpp can read from standard input, it can be used to print (parts of)
manpages. This example (we assume a printer which cannot print double
sided) prints the full |ls| manpage first, followed by an A5 booklet of the
first 8 pages:

 $ man -t ls | vpp # (shows preview and is left with q)
 vpp command (? for help): a
 vpp command (? for help): b 1-8
 printer ready? then turn pack over the long side and type enter (^D skips)
 vpp command (? for help): q
 $

If you don’t need a preview, because you have seen the man page already, you
can print it immediately as an A5 booklet with:

 $ man -t ls | vpp --batch=b

or, to make an A5 booklet of the first 8 pages:

 $ man -t ls |vpp --batch='-8 b'

If you just want to save a PDF copy of the man page in |ls.pdf|, you can say:

 $ man -t ls |vpp -bols

Some PDF-documents, like the CVS manual (|cvs.pdf|), have their Table of
Contents in their back instead of behind the title page. You can use vpp to
rearrange such documents:

 $ vpp --batch='1,2,153-160,3-152 ocvs' cvs.pdf

This overwrites the input document. Note that any links in the file will get
broken, so that is only useful for documents that have to be printed. It would
have been more sensible in this case to say:

 $ vpp --batch='b 1,2,153-160,3-152' cvs

which prints the reordered document as an A5 booklet without replacing it. You
can even print or output page ranges in reverse order:

 $ vpp --batch='12-1 otest' cvs.pdf

= Changes
- Changes with respect to version 3.06:
- --doublesided option removed and d command
 (vpp uses lpoptions to find out printer properties)
- --norc option removed; use --rc=''
- printers and viewers listed with ?-command and with --help option
- v command with argument selects an other viewer
- --batch did not work always

= Author
[Wybo Dekker](wybo@dekkerdocumenten.nl)

= Copyright
Released under the [GNU General Public License](www.gnu.org/copyleft/gpl.html)
DOC

 die() { echo -e "$Myname: Red{*}$Nor" 1>&2; exit 1; }
 Warn() { echo -e "$Myname: Mag{*}$Nor" 1>&2; }
 warn() { $verbose && Warn "$@"; }
helpsrt() { sed -n '/^= Synopsis/,/^= /p' "$0"|sed '1d;$d';
		echo -e "$(list_printers)";
		echo -e "$(list_viewers)";
		exit
	 }
helpall() { sed -n '/^<<.DOC.$/,/^DOC$/p' "$0"|sed -n '1d;$d;p'|less; exit; }
version() { echo $Version; exit; }
install() { which instscript>&/dev/null && instscript --zip --pdf --markdown "$Myname"; exit; }

Red='\e[38;5;1m' # light red]
Blu='\e[38;5;4m' # light blue]
Mag='\e[38;5;5m' # light magenta]
Nor='\e[0m' # reset color]

<<'DOC' #------ function check_needs --
= check_needs
parameters:	-
description:	Verify the availability of executables and tex files
globals set:	 neededex neededtx
globals used:	 neededex neededtx
returns:	1 if something is missing, 0 otherwise
DOC
#---
check_needs() {
 local i err=false
 # executables:
 for i in "${!neededex[@]}"; do
 which "${neededex[$i]}" >/dev/null && unset neededex["$i"]
 done
 if [[${#neededex[@]} -gt 0]]; then
 Warn "Missing executables: ${neededex[*]}"
 err=true
 fi
 # tex files:
 for i in "${!neededtx[@]}"; do
 kpsewhich "${neededtx[$i]}" >/dev/null && unset neededtx["$i"]
 done
 if [[${#neededtx[@]} -gt 0]]; then
 Warn "Missing TeX files: ${neededtx[*]}"
 err=true
 fi
 $err && die Quitting...
}

<<'DOC' #------ function check_viewers --
= check_viewers
parameters:	-
description:	Check pdf viewers
		The variable |viewer| is a key to the viewers array.
		Test viewers for executability.
globals set:	 viewer
globals used:	 viewer viewers
returns:	0
DOC
#---
check_viewers() {
 local i j
 # any viewers defined?
 [[${#viewers[@]} -eq 0]] && die "No viewer could be found"
 # check if al viewers are executable
 for i in "${!viewers[@]}"; do
 j="${viewers[$i]%% *}"
 which "$j" >& /dev/null || die "$j is not executable or not in your PATH"
 done
 # has a viewer been selected?
 if [[-n $viewer]]; then
 [[-z ${viewers[$viewer]}]] && die "viewer $viewer is undefined"
 else # if not defined, take a random one
 viewer="${!viewers[*]}"
 viewer="${viewer%% *}"
 fi
}

<<'DOC' #------ function handle_options --
= handle_options
parameters:	the script’s arguments
description:	Handles the options
globals set:	 first batch input mk print printer rc verbose view viewer viewers writeto
globals used:	 first Version viewer viewers printer printers
returns:	1 on error, 0 otherwise
DOC
#---
first=true
handle_options() {
 local options rcfile
 if ! options=$(getopt \
 -n "$Myname" \
 -o b:p:dr::VvhHqI \
 -l batch:,printer:,rc::,norc,version,verbose,noverbose,view,noview,viewer:,print,noprint,help,Help,quiet,noquiet,mk: -- "$@"
); then exit 1
 fi
 eval set -- "$options"
 while [$# -gt 0]; do
 if $first; then
	 first=false
	 if [[$1 = -r]] || [[$1 == --rc]]; then # if the first option is --rc
	 # shellcheck disable=SC1090
	 test -n "$2" && source "$2" # if its argument is not empty, source it
	 shift 2
	 rcfile="$2"
	 continue
	 else
	 rcfile="$HOME/.${Myname}rc"
	 # shellcheck disable=SC1090
	 test -e "$HOME/.${Myname}rc" && source "$rcfile"
	 fi
 fi
 case $1 in
 (-h|--help) # print a help message and exit
			 helpsrt
			 ;;
 (-H|--Help) # print print full documentation via less and exit
			 helpall
			 ;;
 (-V|--version) # print version and exit
			 echo $Version
			 exit
			 ;;
 (-b|--batch) # run in batch using STRING for print command
			 batch="$2"
			 Warn() { die "$@"; }
			 shift 2
			 ;;
 (--view) # view the document (this is the default)
			 view=true
			 shift
			 ;;
 (--noview) # do not view the document
			 view=false
			 shift
			 ;;
 (--viewer) # specifies the pdf viewer to use
			 viewer="${2%% *}"
			 [[-z ${viewers[$viewer]}]] && viewers[$viewer]="$2"
			 shift 2
			 ;;
 (--print) # offer printing interaction (this is the default)
			 print=true
			 shift
			 ;;
 (--noprint) # do not offer printing interaction
			 print=false
			 shift
			 ;;
 (-p|--printer) # print to printer named STRING
			 [[-n ${printers["$2"]}]] || die "specified printer ($2) does not exist"
			 printer="$2"
			 shift 2
			 ;;
 (-v|--verbose) # be verbose
			 verbose=true
			 shift
			 ;;
 (--noverbose) # don’t be verbose (this is the default)
			 verbose=false
			 shift
			 ;;
 (-r,--rc)		 # set rc file, but this must be the first option!
			 die 'the --rc option must be used before any other options'
			 ;;
 (--mk) mk="\n e edit the tex source and rerun mk\n c rerun mk"
			 writeto="$2"
			 shift 2
			 ;;
 (-I) instscr 2>/dev/null || die "the -I option is for developers only"
			 ;;
 (--) shift
			 break
			 ;;
 (*) break
			 ;;
 esac
 done
 [[${#@} -gt 1]] && die "expecting zero or one input files, not ${#@}"
 input=${1%.} # remove final . (may be there by auto completion)
 [[-n $batch]] && view=false
}

<<'DOC' #------ function find_pdf --
= find_pdf
parameters:	-
description:	Find the input and provide a pdf-copy;
		If vpp had no file argument, standard input is used.
		If the argument has one of the extensions .pdf, .ps or .eps, or
		any uppercase variant, that file is used.
		Any other argument is used as such, if the file exists or, if not,
		a .pdf, PDF, PS, .ps, .eps or .EPS extension is added and the
		first existing file is used.
globals set:	 log tempdir
globals used:	 input tempdir
returns:	1 if no input is found, 0 otherwise.
DOC
#---
find_pdf() {
 local tempdir
 tempdir=$(mktemp -d -t vpp.XXXXXXXXXX)
 # shellcheck disable=SC2064
 trap "rm -rf $tempdir" 0 1 2 15
 warn "running in temporary directory $tempdir"
 shopt -s nocasematch
 if [[-z $input]]; then
 warn "using standard input"
 cat - > "$tempdir/main"
 exec 0>&-
 exec 0</dev/tty
 elif [[$input =~ \.(pdf|ps|eps)$]]; then
 [[-e $input]] || die "$input: not found"
 [[-s $input]] || die "$input: empty"
 [[-r $input]] || die "$input: not readable"
 cat "$input" > "$tempdir/main"
 warn "using $input"
 log=$(readlink -m "${input%.pdf}.log")
 else
 local i found=false
 for i in $input.{pdf,PDF,ps,PS,eps,EPS} $input; do
	 if [[-e $i]]; then
	 found=true
	 break
	 fi
 done
 $found || die "$input: not found; I tried $input.{pdf,PDF,ps,PS,eps,EPS} and $input"
 [[-s $i]] || die "$i: empty file"
 cat "$i" > "$tempdir/main"
 fi
 shopt -u nocasematch
 cd "$tempdir" || exit 1
 local typ
 typ=$(file -b main)
 typ=${typ%% *}
 case $typ in
 (PDF) 	mv main main.pdf;;
 (PostScript)	ps2pdf main main.pdf; rm main;;
 (*) die "Input is neither PDF nor PostScript; file says: $typ"
 esac
}

<<'DOC' #------ function pdfproperties --
= pdfproperties
parameters:	-
description:	Find page width, page height and the number of pages in the input file
globals set:	 height pagecount width
globals used:	 height pagecount width
returns:	0
DOC
#---
pdfproperties() {
 while true; do
 [[$x =~ ^PDF]] && break
 [[$x =~ ^Pages:\ *([0-9]*)]] && pagecount="${BASH_REMATCH[1]}"
 [[$x =~ ^Page\ size:\ *([0-9]*)(\.[0-9]*)?\ *x\ *([0-9]*)(\.[0-9]*)?]] && {
	 width=$(printf "%0.0f" "${BASH_REMATCH[1]}${BASH_REMATCH[2]}")
	 height=$(printf "%0.0f" "${BASH_REMATCH[3]}${BASH_REMATCH[4]}")
 }
 read -r x
 done < <(pdfinfo main.pdf)
 warn "$pagecount pages, papersize $width x $height"
}

<<'DOC' #------ function ask --
= ask
parameters:	-
description:	Prompt for a command, return the command in com
globals set:	 com
globals used:	 com prompt
returns:	0
DOC
#---
ask() {
 read -r -e -p "$prompt" com </dev/tty
 history -s -- "$com"
 com=(${com//,/ })
}

<<'DOC' #------ function printhelp --
= printhelp
parameters:	-
description:	Print help for vpp-commands and show which viewer and printer
		are active.
globals set:	-
globals used:	 Blu Nor mk
returns:	0
DOC
#---
printhelp() {
 echo -ne "
 ${Blu}Command Examples:$Nor
 5 to print page 5
 5- to print pages 5 through the end
 5-7 to print pages 5, 6 and 7
 7-5 ox write pages 7, 6 and 5, in that order, to x.pdf
 -7 to print the first 7 pages
 5-7,19- to print pages 5, 6, 7 and 19 through the end
 a to print the whole document
 - to print the whole document
 a x3 to print 3 copies of the document
 x3 the same
 5 x3 to print 3 copies of page 5
 t print the whole document twosided
 t 2- print twosided starting at page 2
 b to print the whole document as an a5 size booklet
 b -12 to print the first 12 pages as an a5 size booklet
 ${Blu}Other commands:$Nor$mk
 e (if called by mk) edit the tex source and rerun mk
 c (if called by mk) rerun mk
 v (re)view the ps/pdf file
 w list errors and warnings from the log file
 oxyz send pdf output to file xyz.pdf instead of printer
 pxyz print to printer xyz
 h display this help
 ? display this help
 q quit
 $(list_printers)
 $(list_viewers)\n" |sed 's/ //'
 [[-n $batch]] && exit
}

ask user for pages to printed or exported as pdf
<<'DOC' #------ function ask_selection --
= ask_selection
parameters:	zero to many user commands
description:	Interact with user, specifying pages to be printed or exported as pdf,
		or to re-view the pdf or (if called from mk) re-edit the tex-source.
		If called with arguments (caused by vpp’s |--batch| option) executes those.
globals set:	 booklet com lpropt output printer saved selection twosided viewer
globals used:	 Mag Myname Nor Red VPPCHECKSAVED batch booklet com compileexit editexit
		 log output pagecount printers saved selection twosided viewer viewers
returns:	0
DOC
#---
ask_selection() {
 trap 'echo; Warn "${Mag}exit with q command"; selection=continue; return' 2
 com=($@)
 [[${#com[@]} -eq 0]] && ask
 if [[${#com} -eq 0]]; then
 selection=continue
 return
 fi
 output='' booklet=false twosided=false selection='' lpropt=''
 while [[${#com[@]} -gt 0]]; do
 local c=${com[0]}
 com=("${com[@]:1}")
 case $c in
 (q) # drop on q
	 # useful if vpp is used to print or copy data from a scanner:
	 test -n "$VPPCHECKSAVED" && ! $saved && {
	 echo -e "${Red}You requested saving but did not use the o command"\
		 "\nAnother q will destroy your copy$Nor"
	 saved=true
	 selection=continue
	 return
	 }
	 exit 0
	 ;;
 (e) # edit request for caller
	 exit "$editexit"
	 ;;
 (c) # re-compile request for caller
	 exit "$compileexit"
	 ;;
 (v) # (re)view the ps/pdf data
	 ${viewers[$viewer]} main.pdf 2>/dev/null &
	 selection=continue
	 return
	 ;;
 (x+([1-9])*([0-9])) # x3 -> -#3
	 lpropt=${c/x/-#}
	 ;;
 (o*) # output to file instead of printer
	 output=${c#o}
	 if [[-z $output]]; then
	 Warn "filename must follow o without spacing"
	 selection=continue
	 return
	 fi
	 [[$output =~ ^/]] || output="$writeto/$output"
	 if [[! -w ${output%/*}]]; then
	 Warn "Cannot write to $output"
	 selection=continue
	 return
	 fi
	 saved=true
	 ;;
 (p*) # set printer
	 i=${c#p}
	 if [[-z $i]]; then
	 Warn "p must be followed by a printer name, without spacing"
	 elif [[-z ${printers[$i]}]]; then
	 Warn "printer $i does not exist"
	 else
	 printer=$i
	 fi
	 if [[${#com[@]} -eq 0]]; then
	 selection=continue
	 return
	 fi
	 ;;
 (v*) # with argument, set viewer; without: run it
	 local i=${c#v}
	 if [[-z ${viewers[$i]}]]; then
	 Warn "viewer $i not found in ~/.${Myname}rc"
	 else
	 viewer=$i
	 fi
	 selection=continue
	 return
	 ;;
 (b) booklet=true;; 	# print a5 booklet
 (t) twosided=true;; 	# print twosided
 (a) selection+=1-$pagecount,;;	# print all
 (-) selection+=1-$pagecount,;; # print all
 (+([[:digit:]])) selection+=$c,;;
 (+([[:digit:]])-) selection+=cpagecount,;;
 (-+([[:digit:]])) selection+=1$c,;;
 (+([[:digit:]])-+([[:digit:]]))
	 selection+=$c,
	 ;;
 (\?|h) printhelp
	 selection=continue
	 return
	 ;;
 (w) # show tex warning and error messages in log file
	 if [[-s "$log"]]; then
	 texlog_extract "$log"
	 else
	 Warn "No log file available"
	 fi
	 selection=continue
	 return
	 ;;
 (*) local e="Unrecognized command «$c»$Nor"
	 if [[-n $batch]]; then
	 die "$e"
	 else
	 Warn "$e - try again"
	 selection=continue
	 return
	 fi
 esac
 done
 selection=${selection%,}
 : ${selection:=1-$pagecount}

 # pages in range?
 if [[! $selection =~ ^[-1-9]]]; then
 Warn "page selection must start with a minus sign or a digit between 1 and 9"
 selection=continue
 else
 while read -r i; do
	 ((i>=1 && i<=pagecount)) && continue
	 Warn "Illegal page number$Nor $i: PDF has $pagecount pages"
	 selection=continue
 done < <(sed 's/[,-]\+/\n/g' <<<"$selection")
 fi
}

<<'DOC' #------ function wait_for_printer --
= wait_for_printer
parameters:	-
description:	Wait for user typing |enter|, signalling that the printer is ready
		for next job. |^D| instead skips further output.
globals set:	-
globals used:	-
returns:	0
DOC
#---
wait_for_printer() {
 read -rp "printer ready? then turn pack over the long side and type enter (^D skips)" </dev/tty ||
 exit 0
}

<<'DOC' #------ function printout --
= printout
parameters:	-
description:	Print selected pages or output them to pdf.
		Calls doselection for the actual output.
globals set:	 selection
globals used:	 batch booklet output printer printers selection twosided writeto
returns:	0
DOC
#---
printout() {
 while true; do
 ask_selection "$batch"
 [[$selection == continue]] && continue
 [[-z $selection]] && selection=-

 if ${printers[$printer]}; then
	 doselection
 else
	 if $booklet; then
	 doselection odd
	 [[-n $output]] || wait_for_printer
	 doselection even
	 elif $twosided; then
	 doselection odd
	 [[-n $output]] || wait_for_printer
	 doselection even
	 else
	 doselection
	 fi
 fi
 [[-n $batch]] && break
 done
}

<<'DOC' #------ function doselection --
= doselection
parameters:	1: (empty) if all pages of the selection are to be printed,
		"odd" if only the odd pages,
		"even" if only the even pages to be printed
description:	Make a selection of pdf pages and print it or output it to pdf file.
globals set:	 LATEX selection
globals used:	 Mag Nor Red booklet height lpr lpropt output printer
		 selection verbose width
returns:	0
DOC
#---
doselection() {
 local includeopt pagesel evenodd=$1 outpdf i
 $booklet && includeopt=', booklet, landscape'
 [[-n $evenodd]] && pagesel="\\usepackage[$evenodd]{pagesel}"
 outpdf=vpp.pdf
 # if the whole document is selected, without booklet or
 # twosided printing, we can simply print the original pdf or,
 # if a copy is requested with the o command, copy it to the
 # new pdf, saving link information which is lost otherwise:
 if [[$includeopt$pagesel$selection != -]]; then
 # a selection of pages needed or pages need to be arranged to a booklet
 # a twosided print:
 echo '%!pdflatex
	 \documentclass{article}
	 \usepackage[papersize={'"$width"'bp,'"$height"'bp}]{geometry}
	 '"$pagesel"' % require *before* pdfpages
	 \usepackage{pdfpages}[2004/03/27]
	 \begin{document}
	 \includepdf[pages={'$selection'}'"$includeopt"']{main.pdf}
	 \end{document}
 ' > vpp.tex
 export LATEX='pdflatex -interaction=batchmode'
 $verbose && i='' || i=-q
 texi2dvi -p $i vpp.tex || die "${Red}Error running texi2dvi"
 else
 # all pages needed without rearrangement:
 outpdf=main.pdf
 fi
 if [[-n $output]]; then
 # An output pdf was specified with the o command:
 if [[-e $output.pdf]]; then
	 # specified file exists; overwrite it?
	 echo -ne "${Mag}File $output.pdf exists$Nor - overwrite? (yN) "
	 read -r i </dev/tty
	 if [[! $i =~ y]]; then
	 selection=continue
	 return
	 fi
 fi
 # eventually, append _even or _odd to the pdf’s filename:
 [[-n $evenodd]] && output+=_$evenodd
 warn "copying $outpdf to $output"
 mv "$outpdf" "$output.pdf"
 else
 if [[-n $printer]]; then i=-P; else i=''; fi
 local command="$lpr iprinter $lpropt $outpdf"
 warn "running: $command"
 $command
 fi
}

<<'DOC' #------ function find_printers --
= find_printers
parameters:	-
description:	Use |lpstat| to find any printers defined;
		use |lpoptions| to detect if each printer is doublesided;
		create associative array |printers| with printer names as keys
		and set the values to |true| for doublesided printers and to false
		for singlesided ones.
		Issue a warning if no printers are found.
globals set:	 printer printers
globals used:	 printer printers
returns:	-
DOC
#---
find_printers() {
 # find current default printer:
 printer=$(lpstat -d)
 if [[$printer =~ :\ (.*)]]; then
 printer=${BASH_REMATCH[1]}
 else
 printer=
 fi
 # find printers and their sidedness (makes each printer default in turn)
 for i in $(lpstat -a 2>/dev/null |cut -d' ' -f1); do
 printers["$i"]=$(lpoptions -d "$i" |
	sed 's/.*sides=\([a-z]*\).*/\1/;s/one/false/;s/two/true/')
 done
 [[-n "$printer"]] && lpoptions -d $printer >/dev/null # restore defaultprinter
 [[${#printers[@]} -eq 0]] && Warn "no printers found"
}

<<'DOC' #------ function list_printers --
= list_printers
parameters:	-
description:	List available printers and their sidedness; mark current printer.
globals set:	 printers printer
globals used:	 Blu Nor Red printers printer
returns:	-
DOC
#---
list_printers() {
 local i j k c
 echo "${Blu}Available printers:$Nor"
 for i in "${!printers[@]}"; do
 j=doublesided
 c=
 k=
 [[$printer == "$i"]] && k=' (current printer)' && c=$Red
 ${printers[$i]} || j=singlesided
 printf " %s%s\t→ %s%s%s\n" "$c" "$i" "$j" "$k" "$Nor"
 done
}

<<'DOC' #------ function list_viewers --
= list_viewers
parameters:	-
description:	List available viewers; mark current viewer
globals set:	 viewer viewers
globals used:	 Blu Nor Red viewer viewers
returns:	-
DOC
#---
list_viewers() {
 local i j k c
 echo "${Blu}Available viewers:$Nor"
 for i in "${!viewers[@]}"; do
 k=
 c=
 [[$viewer == "$i"]] && k=' (current viewer)' && c=$Red
 printf " %s%s\t→ %s%s%s\n" "$c" "$i" "${viewers[$i]}" "$k" "$Nor"
 done
}

<<'DOC' #------ function clean_viewers --
= clean_viewers
parameters:	-
description:	Remove unavailable viewers, no messages
globals set:	 viewer viewers
globals used:	-
returns:	-
DOC
#---
clean_viewers() {
 local i
 for i in "${!viewers[@]}"; do
 which "${viewers[$i]}" >/dev/null || {
	 unset viewers["$i"]
	 [[$viewer == "$i"]] && unset viewer
 }
 done
}

declare -A viewers printers
 viewers=([ev]=evince [xp]=xpdf [gv]=gv [ac]=acroread)
 viewer=ev
 neededex=(file getopt kpsewhich less lpoptions lpr lpstat mktemp pdfinfo
	 pdflatex ps2pdf readlink texi2dvi texlog_extract)
 neededtx=()
 saved=false
 view=true
 verbose=false
 print=true
 batch=
 editexit=99
compileexit=98
 prompt='vpp command (? for help): '
 writeto=${VPPOUTDIR:=$(pwd)}
	lpr=lpr
 printer=

check_needs
clean_viewers
find_printers
handle_options "$@"
check_viewers
find_pdf
pdfproperties

[[-n $batch]] || $view || $print || die "Nothing to do: use --view or --print or both"
if $view; then
 $verbose && echo "running: ${viewers[$viewer]} main.pdf"
 ${viewers[$viewer]} main.pdf 2>/dev/null &
fi
if $print; then
 printout
else
 wait
fi

view_print_ps_pdf/README
 script: vpp - View and (selectively) Print PDF and PostScript
 type: bash
 author: Wybo Dekker
 email: wybo@dekkerdocumenten.nl
version: 3.07
license: GNU General Public License
--
vpp is a Bash script that displays a PDF or PostScript document (after
conversion to PDF). The user can use the viewer to print the document or,
alternatively, leave the viewer and use vpp’s facilities to print selected
pages to a one- or two-sided hardcopy or an A5-booklet: see the section
/Page selection and other commands/ for the details. Instead of printing your
selections, you can also save them into PDF files.

Recent changes:
- Changes with respect to version 3.06:
- --doublesided option removed and d command
(vpp uses lpoptions to find out printer properties)
- --norc option removed; use --rc=''
- printers and viewers listed with ?-command and with --help option
- v command with argument selects an other viewer
- --batch did not work always

view_print_ps_pdf/vpp.pdf

vpp View and (selectively) Print PDF and PostScript

doc generated from the script with vpp bash script, version=3.07

Synopsis

vpp [options] [file]

Options:

-h,--help print a help message and exit
-H,--Help print print full documentation via less and exit
-V,--version print version and exit
-b,--batch=STRING run in batch after running commands in STRING
--view view the document (this is the default)
--noview do not view the document
--viewer=KEY use pdf viewer named KEY
--print offer printing interaction (this is the default)
--noprint do not offer printing interaction

-p,--printer=KEY print to printer named KEY
-v,--verbose be verbose
--noverbose don’t be verbose (this is the default)

-r,--rc[=STRING] use STRING as an rc file; if STRING is absent, don’t read any rc file

Arguments for short options are given without a separator, so you can write either --rc=myrc or -rmyrc.

Description

vpp is a Bash script that displays a PDF or PostScript document (after conversion to PDF). The user can
use the viewer to print the document or, alternatively, leave the viewer and use vpp’s facilities to print
selected pages to a one- or two-sided hardcopy or an A5-booklet: see the section Page selection and other
commands for the details. Instead of printing your selections, you can also save them into PDF files.

If file is specified with a .ps or a .pdf extension, vpp will simply use that file. Otherwise, vpp will look
for file.pdf, file.ps, and file, in that order, and will use the first existing file. If file lacks, standard
input is used.

In any case, the first few characters in the file determine whether it is treated as a PDF or as a PostScript
file.

vpp needs a viewer and a printer; see the section Printers and viewers.

Exit value

vpp has four possible exit values:

0 OK
1 error
2 edit, which is a signal to the calling program that a new edit session is at order; this is used by mk.
3 re-compile; this is used by mk

Dependencies

kpsewhich from texlive
pdflatex from texlive
pdfpages.sty from texlive
pdfinfo from poppler-utils
ps2pdf from ghostscript

1

http://www.dekkerdocumenten.nl/unix/doc/gendoc.html

texi2dvi version 1.152 or greater, from texinfo
mktemp from coreutils
readlink from coreutils
getopt from util-linux
lpr from cups-bsd
lpoptions,lpstat from cups-client
file,less
texlog_extract from texlive

Printers and viewers

For the operation of vpp, availability of printers and pdf viewers is important. Therefore, two associative
arrays are defined:

printers an array available printers, where the keys are printer names and the values are true or false,
depending on whether the printer can print double sided (true) or not (false).

viewers an array of available viewers, where the keys are viewer names and the values are the corre-
sponding commands, with arguments if any.

For each array, an index is set: printer for the printers array. viewer for the viewers array. printer points
to the current printer, viewer to the current viewer.

You can inspect the contents of these arrays either with the short help option (-h or --help) or, when you
are in vpp’s command mode, with the ? command.

The printers array is automatically filled, using the lpstat and lpoptions commands.

The viewers array can be set in several ways:

• It is initially set to:
viewers=([xp]=xpdf [ev]=evince [gv]=gv [ac]=acroread)

but after that, unavailable viewers are silently removed. This may result in an empty list.
• After this, an rc file may be available, either in the form of ~/.vpprc or specified with the --rc option.
• the --viewer option may specify a viewer.
• Finally, a viewer may be specified on-the-fly, with the v command (see the section on Page selection
and other commands.

Options

vpp comes with several options. Before evaluating any options, vpp will try to read the user rc-file,
~/.vpprc, where you can set defaults for most options, by assigning values to variable named after the
long form of the options. For example, there are three ways to select the printer named k550:

• use the option --printer=k550.
• enter a line with printer=k550 in your rc file (~/.vpprc, for example).
• in command mode, enter pk550.

These are the variables that can be set in ~/.vpprc:

batch (string) sets the --batch option
print (true or false) sets printing interaction on or off
printer (string) sets the --printer option
verbose (true or false) sets the --verbose option
view (true or false) sets viewing on or off
viewer (string) set the viewer; arguments may be added; example:

viewer='acroread -geometry 1450x1150+0+0'
You should use a basename here, that is: the name of the viewer should contain no slashes, and
it should be in your PATH.

--help
Prints synopsis and available printers and viewers, then quits.

--Help

2

Prints this documentation, via less.
--version

Prints version, then quits.
--verbose

Prints messages about the progress vpp is making. Can be reverted with --noverbose.
--rc=rc-file

Read the specified rc-file, instead of the default rc-file, ~/.vpprc. If this option is used, it must be
used before any other options. If rc-file is an empty string, no rc-file will be read, thus skipping
reading of ~/.vpprc.

--batch=string
Prevents the –print option to interrogate the user about pages to be printed. Instead the document
is printed according to the commands in the mandatory string. Also sets viewing off. Thus the
command
vpp --batch '2-3 x3' test.pdf
prints 3 copies of pages 2 and 3 of test.pdf without interaction

--print
Present the print prompt. This is the default. Can be reverted with --noprint, normally used to
suppress the print prompt, for example when using vpp from other scripts that generate PDF or
PostScript documents that have only to be displayed or printed without even being displayed.

--view
Run the file viewer. This is the default. Can be reverted with --noview, normally used to suppress
starting the viewer, for example when using vpp from other scripts that generate PDF or PostScript
documents that have only to be printed.

--printer=key
Specifies the printer to be used instead of the system default printer. See the section Printers and
viewers for more information.

--viewer=[key|command]
Specifies the viewer to use. This script defines an associative array viewers containing 4 viewers
as follows:
viewers=([xp]=xpdf [ev]=evince [gv]=gv [ac]=acroread)
and the viewer is set to xp by default. However, you can define your own set of viewers in the
~/.vpprc file or in any rc file given with the --rc option. For example:
viewers=(
[xp]="xpdf -g 970x1050+0+0 -font 8x13bold -z page -cont"
[ac]="acroread -geometry 850x890+0+0"
[ev]="evince --fullscreen --presentation"
)
viewer=xp

Page selection and other commands

When you select the --print option, and you did not also use the --batch option, vpp interrogates you
about the pages you want to print. To that end the following prompt appears:

vpp command (? for help):

upon typing ? or h, vpp displays examples of possible commands:

Command Examples:
5 to print page 5
5- to print pages 5 through the end
5-7 to print pages 5, 6 and 7
7-5 ox write the same pages, in reversed order, to x.pdf
-7 to print the first 7 pages
5-7,19- to print pages 5, 6, 7 and 19 through the end
a to print the whole document
- to print the whole document
a x3 to print 3 copies of the document
x3 the same
5 x3 to print 3 copies of page 5
t print the whole document twosided
t 2- print twosided starting at page 2
b to print the whole document as an a5 size booklet

3

b -12 to print the first 12 pages as an a5 size booklet
Other commands:

e (if called by mk) edit the tex source and rerun mk
c (if called by mk) rerun mk
v (re)view the ps/pdf file or, with an argument, specify a viewer.
w list errors and warnings from the log file
oxyz send pdf output to file xyz.pdf instead of printer
pxyz print to printer xyz
h display this help
? display this help
q quit

With these descriptions, no further explanation should be necessary, except for the following:

When twosided (t) or booklet (b) printing is selected for a non-duplex printer, printing will be performed
in two shifts, one for the front side and one for the backside. Between the shifts, another prompt appears:

printer ready? then turn stack and type return

You will have to arrange your printer such that, with the printed sides up, the first page printed will be at
the bottom of the stack, and the last page printed will be on top. Normally you will then have your output
come out the back of your printer. Turn the stack then means: rotate it over the long side of the paper and
feed it back into the printer for the other side to be printed.

When you use the oxyz subcommand, your selection will not be printed but instead will be saved in a PDF
file named xyz.pdf. When you use a t or b selection, you will not, of course, be prompted to turn the paper
stack. Instead, the odd and even pages of your selection will be saved in separate PDF files, xyz_odd.pdf
and xyz_even.pdf.

Environment

Two environment variables may be useful in scripts using vpp:

VPPOUTDIR The directory where PDF files generated with the o command will be saved; the default
is the working directory.

VPPCHECKSAVED If non-empty, vpp will check on exit that the inspected file has been saved into a pdf file
and will issue a warning if it hasn’t.

Examples

Since vpp can read from standard input, it can be used to print (parts of) manpages. This example (we
assume a printer which cannot print double sided) prints the full ls manpage first, followed by an A5
booklet of the first 8 pages:

$ man -t ls | vpp # (shows preview and is left with q)
vpp command (? for help): a
vpp command (? for help): b 1-8
printer ready? then turn pack over the long side and type enter (^D skips)
vpp command (? for help): q
$

If you don’t need a preview, because you have seen the man page already, you can print it immediately as
an A5 booklet with:

$ man -t ls | vpp --batch=b

or, to make an A5 booklet of the first 8 pages:

$ man -t ls |vpp --batch='-8 b'

If you just want to save a PDF copy of the man page in ls.pdf, you can say:

$ man -t ls |vpp -bols

Some PDF-documents, like the CVS manual (cvs.pdf), have their Table of Contents in their back instead
of behind the title page. You can use vpp to rearrange such documents:

$ vpp --batch='1,2,153-160,3-152 ocvs' cvs.pdf

This overwrites the input document. Note that any links in the file will get broken, so that is only useful

4

for documents that have to be printed. It would have been more sensible in this case to say:

$ vpp --batch='b 1,2,153-160,3-152' cvs

which prints the reordered document as an A5 booklet without replacing it. You can even print or output
page ranges in reverse order:

$ vpp --batch='12-1 otest' cvs.pdf

Changes

• Changes with respect to version 3.06:
• –doublesided option removed and d command (vpp uses lpoptions to find out printer properties)
• –norc option removed; use –rc=”
• printers and viewers listed with ?-command and with –help option
• v command with argument selects an other viewer
• –batch did not work always

Author

Wybo Dekker

Copyright

Released under the GNU General Public License

Functions used:

check_needs

parameters: -
description: Verify the availability of executables and tex files
globals set: neededex neededtx
globals used: neededex neededtx
returns: 1 if something is missing, 0 otherwise

check_viewers

parameters: -
description: Check pdf viewers The variable viewer is a key to the viewers array. Test viewers for

executability.
globals set: viewer
globals used: viewer viewers
returns: 0

handle_options

parameters: the script’s arguments
description: Handles the options
globals set: first batch input mk print printer rc verbose view viewer viewers writeto
globals used: first Version viewer viewers printer printers
returns: 1 on error, 0 otherwise

find_pdf

5

mailto:wybo@dekkerdocumenten.nl

http://www.gnu.org/copyleft/gpl.html

parameters: -
description: Find the input and provide a pdf-copy; If vpp had no file argument, standard input is used.

If the argument has one of the extensions .pdf, .ps or .eps, or any uppercase variant, that
file is used. Any other argument is used as such, if the file exists or, if not, a .pdf, PDF,
PS, .ps, .eps or .EPS extension is added and the first existing file is used.

globals set: log tempdir
globals used: input tempdir
returns: 1 if no input is found, 0 otherwise.

pdfproperties

parameters: -
description: Find page width, page height and the number of pages in the input file
globals set: height pagecount width
globals used: height pagecount width
returns: 0

ask

parameters: -
description: Prompt for a command, return the command in com
globals set: com
globals used: com prompt
returns: 0

printhelp

parameters: -
description: Print help for vpp-commands and show which viewer and printer are active.
globals set: -
globals used: Blu Nor mk
returns: 0

ask_selection

parameters: zero to many user commands
description: Interact with user, specifying pages to be printed or exported as pdf, or to re-view the pdf

or (if called from mk) re-edit the tex-source. If called with arguments (caused by vpp’s
--batch option) executes those.

globals set: booklet com lpropt output printer saved selection twosided viewer
globals used: Mag Myname Nor Red VPPCHECKSAVED batch booklet com compileexit editexit

log output pagecount printers saved selection twosided viewer viewers
returns: 0

wait_for_printer

parameters: -
description: Wait for user typing enter, signalling that the printer is ready for next job. ^D instead

skips further output.
globals set: -
globals used: -
returns: 0

6

printout

parameters: -
description: Print selected pages or output them to pdf. Calls doselection for the actual output.
globals set: selection
globals used: batch booklet output printer printers selection twosided writeto
returns: 0

doselection

parameters: 1: (empty) if all pages of the selection are to be printed, ”odd” if only the odd pages,
”even” if only the even pages to be printed

description: Make a selection of pdf pages and print it or output it to pdf file.
globals set: LATEX selection
globals used: Mag Nor Red booklet height lpr lpropt output printer

selection verbose width
returns: 0

find_printers

parameters: -
description: Use lpstat to find any printers defined; use lpoptions to detect if each printer is dou-

blesided; create associative array printers with printer names as keys and set the values
to true for doublesided printers and to false for singlesided ones. Issue a warning if no
printers are found.

globals set: printer printers
globals used: printer printers
returns: -

list_printers

parameters: -
description: List available printers and their sidedness; mark current printer.
globals set: printers printer
globals used: Blu Nor Red printers printer
returns: -

list_viewers

parameters: -
description: List available viewers; mark current viewer
globals set: viewer viewers
globals used: Blu Nor Red viewer viewers
returns: -

clean_viewers

parameters: -
description: Remove unavailable viewers, no messages
globals set: viewer viewers
globals used: -
returns: -

7

